Top Qs
Timeline
Chat
Perspective

Somer–Lucas pseudoprime

Type of odd composite number From Wikipedia, the free encyclopedia

Remove ads
Remove ads

In mathematics, specifically number theory, an odd and composite number N is a Somer–Lucas d-pseudoprime (with given d  1) if there exists a nondegenerate Lucas sequence with the discriminant such that and the rank appearance of N in the sequence U(P, Q) is

where is the Jacobi symbol.

Remove ads

Applications

Unlike the standard Lucas pseudoprimes, there is no known efficient primality test using the Lucas d-pseudoprimes. Hence they are not generally used for computation.

See also

Lawrence Somer, in his 1985 thesis, also defined the Somer d-pseudoprimes. They are described in brief on page 117 of Ribenbaum 1996.

References

  • Somer, Lawrence (1998). "On Lucas d-Pseudoprimes". In Bergum, Gerald E.; Philippou, Andreas N.; Horadam, A. F. (eds.). Applications of Fibonacci Numbers. Vol. 7. Springer Netherlands. pp. 369–375. doi:10.1007/978-94-011-5020-0_41. ISBN 978-94-010-6107-0.
  • Carlip, Walter; Somer, Lawrence (2007). "Square-free Lucas d-pseudoprimes and Carmichael-Lucas numbers". Czechoslovak Mathematical Journal. 57 (1): 447–463. doi:10.1007/s10587-007-0072-6. hdl:10338.dmlcz/128183. S2CID 120952494.
  • Weisstein, Eric W. "Somer–Lucas Pseudoprime". MathWorld.
  • Ribenboim, P. (1996). "§2.X.D Somer-Lucas Pseudoprimes". The New Book of Prime Number Records (3rd ed.). New York: Springer-Verlag. pp. 131–132. ISBN 9780387944579.
Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads