Top Qs
Timeline
Chat
Perspective
Splitting lemma (functions)
From Wikipedia, the free encyclopedia
Remove ads
In mathematics, especially in singularity theory, the splitting lemma is a useful result due to René Thom which provides a way of simplifying the local expression of a function usually applied in a neighbourhood of a degenerate critical point.
Formal statement
Summarize
Perspective
Let be a smooth function germ, with a critical point at 0 (so for ). Let V be a subspace of such that the restriction f |V is non-degenerate, and write B for the Hessian matrix of this restriction. Let W be any complementary subspace to V. Then there is a change of coordinates of the form with , and a smooth function h on W such that
This result is often referred to as the parametrized Morse lemma, which can be seen by viewing y as the parameter. It is the gradient version of the implicit function theorem.
Remove ads
Extensions
There are extensions to infinite dimensions, to complex analytic functions, to functions invariant under the action of a compact group, ...
References
- Poston, Tim; Stewart, Ian (1979), Catastrophe Theory and Its Applications, Pitman, ISBN 978-0-273-08429-7.
- Brocker, Th (1975), Differentiable Germs and Catastrophes, Cambridge University Press, ISBN 978-0-521-20681-5.
Wikiwand - on
Seamless Wikipedia browsing. On steroids.
Remove ads