Top Qs
Timeline
Chat
Perspective
Størmer number
Number n where the highest prime factor of (n^2 + 1) is at least 2n From Wikipedia, the free encyclopedia
Remove ads
In mathematics, a Størmer number or arc-cotangent irreducible number is a positive integer for which the greatest prime factor of is greater than or equal to . They are named after Carl Størmer.
Remove ads
Sequence
The first Størmer numbers below 100 are:
1, 2, 4, 5, 6, 9, 10, 11, 12, 14, 15, 16, 19, 20, 22, 23, 24, 25, 26, 27, 28, 29, 33, 34, 35, 36, 37, 39, 40, 42, 44, 45, 48, 49, 51, 52, 53, 54, 56, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 69, 71, 74, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90, 92, 94, 95, 96, 97... (sequence A005528 in the OEIS).
The only numbers below 100 that aren't Størmer are 3, 7, 8, 13, 17, 18, 21, 30, 31, 32, 38, 41, 43, 46, 47, 50, 55, 57, 68, 70, 72, 73, 75, 76, 83, 91, 93, 98, 99 and 100.
Remove ads
Density
John Todd proved that this sequence is neither finite nor cofinite.[1]
Unsolved problem in mathematics
What is the natural density of the Størmer numbers?
More precisely, the natural density of the Størmer numbers lies between 0.5324 and 0.905. It has been conjectured that their natural density is the natural logarithm of 2, approximately 0.693, but this remains unproven.[2] Because the Størmer numbers have positive density, the Størmer numbers form a large set.
Remove ads
Application
The Størmer numbers arise in connection with the problem of representing the Gregory numbers (arctangents of rational numbers) as sums of Gregory numbers for integers (arctangents of unit fractions). The Gregory number may be decomposed by repeatedly multiplying the Gaussian integer by numbers of the form , in order to cancel prime factors from the imaginary part; here is chosen to be a Størmer number such that is divisible by .[3]
References
Wikiwand - on
Seamless Wikipedia browsing. On steroids.
Remove ads