Top Qs
Timeline
Chat
Perspective
List of limits
From Wikipedia, the free encyclopedia
Remove ads
This is a list of limits for common functions such as elementary functions. In this article, the terms a, b and c are constants with respect to x.
This article needs additional citations for verification. (August 2019) |
![]() |
Limits for general functions
Definitions of limits and related concepts
if and only if . This is the (ε, δ)-definition of limit.
The limit superior and limit inferior of a sequence are defined as and .
A function, , is said to be continuous at a point, c, if
Operations on a single known limit
If then:
- [1][2][3]
- [4] if L is not equal to 0.
- if n is a positive integer[1][2][3]
- if n is a positive integer, and if n is even, then L > 0.[1][3]
In general, if g(x) is continuous at L and then
Operations on two known limits
If and then:
Limits involving derivatives or infinitesimal changes
In these limits, the infinitesimal change is often denoted or . If is differentiable at ,
- . This is the definition of the derivative. All differentiation rules can also be reframed as rules involving limits. For example, if g(x) is differentiable at x,
- . This is the chain rule.
- . This is the product rule.
If and are differentiable on an open interval containing c, except possibly c itself, and , L'Hôpital's rule can be used:
Inequalities
If for all x in an interval that contains c, except possibly c itself, and the limit of and both exist at c, then[5]
If and for all x in an open interval that contains c, except possibly c itself, This is known as the squeeze theorem.[1][2] This applies even in the cases that f(x) and g(x) take on different values at c, or are discontinuous at c.
Remove ads
Polynomials and functions of the form xa
Polynomials in x
In general, if is a polynomial then, by the continuity of polynomials,[5] This is also true for rational functions, as they are continuous on their domains.[5]
Functions of the form xa
Remove ads
Exponential functions
Functions of the form ag(x)
- , due to the continuity of
- [6]
Functions of the form xg(x)
Functions of the form f(x)g(x)
- [2]
- [2]
- [7]
- [6]
- . This limit can be derived from this limit.
Sums, products and composites
Remove ads
Logarithmic functions
Summarize
Perspective
Natural logarithms
- , due to the continuity of . In particular,
- [7]
- . This limit follows from L'Hôpital's rule.
- , hence
- [6]
Logarithms to arbitrary bases
For b > 1,
For b < 1,
Both cases can be generalized to:
where and is the Heaviside step function
Remove ads
Trigonometric functions
Summarize
Perspective
If is expressed in radians:
These limits both follow from the continuity of sin and cos.
Remove ads
Sums
Summarize
Perspective
In general, any infinite series is the limit of its partial sums. For example, an analytic function is the limit of its Taylor series, within its radius of convergence.
- . This is known as the harmonic series.[6]
- . This is the Euler Mascheroni constant.
Remove ads
Notable special limits
- . This can be proven by considering the inequality at .
- . This can be derived from Viète's formula for π.
Remove ads
Limiting behavior
Summarize
Perspective
Asymptotic equivalences
Asymptotic equivalences, , are true if . Therefore, they can also be reframed as limits. Some notable asymptotic equivalences include
- , due to the prime number theorem, , where π(x) is the prime counting function.
- , due to Stirling's approximation, .
Big O notation
The behaviour of functions described by Big O notation can also be described by limits. For example
- if
Remove ads
References
Wikiwand - on
Seamless Wikipedia browsing. On steroids.
Remove ads