Top Qs
Timeline
Chat
Perspective

Thomas' cyclically symmetric attractor

From Wikipedia, the free encyclopedia

Thomas' cyclically symmetric attractor
Remove ads

In the dynamical systems theory, Thomas' cyclically symmetric attractor is a 3D strange attractor originally proposed by René Thomas.[1] It has a simple form which is cyclically symmetric in the x, y, and z variables and can be viewed as the trajectory of a frictionally dampened particle moving in a 3D lattice of forces.[2] The simple form has made it a popular example.

Thumb
Thomas' cyclically symmetric attractor.

It is described by the differential equations

where is a constant.

corresponds to how dissipative the system is, and acts as a bifurcation parameter. For the origin is the single stable equilibrium. At it undergoes a pitchfork bifurcation, splitting into two attractive fixed points. As the parameter is decreased further they undergo a Hopf bifurcation at , creating a stable limit cycle. The limit cycle then undergoes a period doubling cascade and becomes chaotic at . Beyond this the attractor expands, undergoing a series of crises (up to six separate attractors can coexist for certain values). The fractal dimension of the attractor increases towards 3.[2]

In the limit the system lacks dissipation and the trajectory ergodically wanders the entire space (with an exception for 1.67%, where it drifts parallel to one of the coordinate axes: this corresponds to quasiperiodic torii). The dynamics has been described as deterministic fractional Brownian motion, and exhibits anomalous diffusion.[2][3]

Remove ads

References

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads