Top Qs
Timeline
Chat
Perspective

Ultraconnected space

Property of topological spaces From Wikipedia, the free encyclopedia

Remove ads

In mathematics, a topological space is said to be ultraconnected if no two nonempty closed sets are disjoint.[1] Equivalently, a space is ultraconnected if and only if the closures of two distinct points always have non trivial intersection. Hence, no T1 space with more than one point is ultraconnected.[2]

Properties

Summarize
Perspective

Every ultraconnected space is path-connected (but not necessarily arc connected). If and are two points of and is a point in the intersection , the function defined by if , and if , is a continuous path between and .[2]

Every ultraconnected space is normal, limit point compact, and pseudocompact.[1]

Remove ads

Examples

The following are examples of ultraconnected topological spaces.

See also

Notes

References

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads