Top Qs
Timeline
Chat
Perspective

Zariski's connectedness theorem

From Wikipedia, the free encyclopedia

Remove ads

In algebraic geometry, Zariski's connectedness theorem (due to Oscar Zariski) says that under certain conditions the fibers of a morphism of varieties are connected. It is an extension of Zariski's main theorem to the case when the morphism of varieties need not be birational.

Zariski's connectedness theorem gives a rigorous version of the "principle of degeneration" introduced by Federigo Enriques, which says roughly that a limit of absolutely irreducible cycles is absolutely connected.

Remove ads

Statement

Suppose that f is a proper surjective morphism of varieties from X to Y such that the function field of Y is separably closed in that of X. Then Zariski's connectedness theorem says that the inverse image of any normal point of Y is connected. An alternative version says that if f is proper and f* OX = OY, then f is surjective and the inverse image of any point of Y is connected.

References

  • Zariski, Oscar (1951), Theory and applications of holomorphic functions on algebraic varieties over arbitrary ground fields, Memoirs of the American Mathematical Society, vol. 5, MR 0041487
  • Zariski, Oscar (1957), "The connectedness theorem for birational transformations", Algebraic geometry and topology. A symposium in honor of S. Lefschetz, Princeton, N. J.: Princeton University Press, pp. 182–188, MR 0090099
Remove ads
Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads