For faster navigation, this Iframe is preloading the Wikiwand page for Entjero.

Entjero

El Vikipedio, la libera enciklopedio

La entjeroj (aŭ plenaj nombroj) konsistas el la naturaj nombroj (1, 2, 3, …), la respondaj negativaj nombroj (−1, −2, −3, …) kaj 0 (nulo). Matematikistoj kutime signas la aron de la entjeroj per Z. La naturaj nombroj estas subaro de la entjeroj, kion oni signas per .

La nocio de negativa nombro aperis pro la bezonoj de evoluo de algebro, kiu donis komunajn principojn solvi aritmetikajn problemojn, sendepende de ilia konkreta enhavo kaj valoroj de originaj nombrosignifoj. Probable, negativa respondo povas esti komprenita kiel grando de inversa direkto, ekz. movo en iu aŭ en ĝia inversa direkto, posedi havaĵon aŭ havi ŝuldon, ktp. Ankoraŭ en 6-11 jarcentoj en Hindio, oni regule uzis negativajn nombrojn ĝuste en tiu senco, kion ili havas en nuntempo. Sed en Eŭropa scienco ĝi eniris difinitive nur de tempoj de Kartezio (17 jc), kiu donis al negativaj nombroj la signifon de direktitaj eltranĉoj.

Entjeroj povas esti paraj kaj neparaj. Paraj nombroj oni konsideras tiujn, kiuj dividiĝas je la nombro 2 sen resto, ekz. −4, −2, 0, 2, 4; la aliajn nombrojn el la nefinia vico de entjeroj oni nomas neparaj nombroj, ekz-e −5, −3, −1, 1, 3, 5. Por konstati la parecon de grandaj nombroj, ni rigardas al la fina cifero; se ĝi estas 0, 2, 4, 6, 8 (ekz. 3843924), ĝi estas para nombro, kontraŭokaze (1991) ĝi estas nepara.

La entjero m estas nomata divizoro de la entjero n, se la kvociento de n per m ankaŭ estas entjero. Ekz-e 3 estas divizoro de 9, kaj 1, 2, 3, 4, 6, 12 estas ĉiuj pozitivaj divizoroj de 12.

Alia grava koncepto estas plej granda komuna divizoro (pgkd) de du nombroj. Ekzemple pgkd(12,16)=4, ĉar 4 estas la plej granda entjero, kiu estas kaj divizoro de 12 kaj divizoro de 16.

{{bottomLinkPreText}} {{bottomLinkText}}
Entjero
Listen to this article

This browser is not supported by Wikiwand :(
Wikiwand requires a browser with modern capabilities in order to provide you with the best reading experience.
Please download and use one of the following browsers:

This article was just edited, click to reload
This article has been deleted on Wikipedia (Why?)

Back to homepage

Please click Add in the dialog above
Please click Allow in the top-left corner,
then click Install Now in the dialog
Please click Open in the download dialog,
then click Install
Please click the "Downloads" icon in the Safari toolbar, open the first download in the list,
then click Install
{{::$root.activation.text}}

Install Wikiwand

Install on Chrome Install on Firefox
Don't forget to rate us

Tell your friends about Wikiwand!

Gmail Facebook Twitter Link

Enjoying Wikiwand?

Tell your friends and spread the love:
Share on Gmail Share on Facebook Share on Twitter Share on Buffer

Our magic isn't perfect

You can help our automatic cover photo selection by reporting an unsuitable photo.

This photo is visually disturbing This photo is not a good choice

Thank you for helping!


Your input will affect cover photo selection, along with input from other users.