For faster navigation, this Iframe is preloading the Wikiwand page for Fermita aro.

Fermita aro

El Vikipedio, la libera enciklopedio

En topologio, fermita aro estas speco de aro.

En topologia spaco, aro estas fermita se kaj nur se ĝi koincidas kun sia fermaĵo. Ekvivalente, aro estas fermita se kaj nur se ĝi enhavas ĉiujn siajn limigajn punktojn.

Komplemento de fermita aro estas malfermita aro.

Ĉi tiu estas ne al esti konfuzita kun fermita dukto.

Ecoj

Fermita aro enhavas sian randon. En aliaj vortoj, se esti sur la rando kie iri eksteren iel ajn proksime oni okazos ekster la aro. Noto ke ĉi tiu estas vera ankaŭ se la rando estas la malplena aro, ekzemple en la metrika spaco de racionalaj nombroj, por la aro de nombroj kies la kvadrato estas malpli ol granda ol 2.

  • Ĉiu komunaĵo de ajne multaj fermitaj aroj estas fermita kaj ĉiu kunigaĵo de finia kvanto de fermitaj aroj estas fermita.
  • La malplena aro kaj la tuta spaco estas fermitaj.
  • La komunaĵa propraĵo ankaŭ permesas difini la fermaĵon de aro A en spaco X, kiu estas difinita kiel la plej malgranda fermita subaro de X kiu estas superaro de A. Aparte, la fermaĵo de A povas esti konstruita kiel la komunaĵo de ĉiuj fermitaj superaroj.
  • Aro povas estas nek fermita nek malfermita.
  • Aro povas esti fermita kaj malfermita, ĉi tia aro estas nomata kiel fermita-malfermita aro.

Aro kiu povas esti konstruita kiel kunigaĵo de kalkuleble multaj fermita aroj estas F-sigma aro (Fσ). Ĉi tia aro ne nepre estas fermita.

Ekzemploj

  • La segmento [a,b] de reela linio estas fermita.
  • La unua intervalo [0,1] estas fermita en la metrika spaco de reelaj nombroj, kaj la aro [0,1] ∩ Q de racionalaj nombroj inter 0 kaj 1 (inkluzive) estas fermita en la spaco de racionalaj nombroj, sed [0,1] ∩ Q ne estas fermita en la spaco de reelaj nombroj.
  • La duono-malfermita intervalo [0,1) de la reelaj nombroj estas nek fermita nek malfermita.

Vidu ankaŭ

{{bottomLinkPreText}} {{bottomLinkText}}
Fermita aro
Listen to this article

This browser is not supported by Wikiwand :(
Wikiwand requires a browser with modern capabilities in order to provide you with the best reading experience.
Please download and use one of the following browsers:

This article was just edited, click to reload
This article has been deleted on Wikipedia (Why?)

Back to homepage

Please click Add in the dialog above
Please click Allow in the top-left corner,
then click Install Now in the dialog
Please click Open in the download dialog,
then click Install
Please click the "Downloads" icon in the Safari toolbar, open the first download in the list,
then click Install
{{::$root.activation.text}}

Install Wikiwand

Install on Chrome Install on Firefox
Don't forget to rate us

Tell your friends about Wikiwand!

Gmail Facebook Twitter Link

Enjoying Wikiwand?

Tell your friends and spread the love:
Share on Gmail Share on Facebook Share on Twitter Share on Buffer

Our magic isn't perfect

You can help our automatic cover photo selection by reporting an unsuitable photo.

This photo is visually disturbing This photo is not a good choice

Thank you for helping!


Your input will affect cover photo selection, along with input from other users.