For faster navigation, this Iframe is preloading the Wikiwand page for Hilberta spaco.

Hilberta spaco

El Vikipedio, la libera enciklopedio

En matematiko, hilberta spaco (nomata laŭ David Hilbert) estas ĝeneraligo de eŭklida spaco kiu estas ne limigita per finia kvanto de dimensioj. Tial ĝi estas ena produta spaco, kio signifas ke ĝi havas nociojn de distanco kaj angulo (aparte la nocio de orteco). Ankaŭ, ĝi kontentigas pli teknikan kompletecon kiu certiĝas ke limigoj ekzistas kiam oni ilin atendas, kiu faciligas diversajn difinojn de kalkulo. Hilbertaj spacoj provizas ĉirkaŭtekston kun por formaligi kaj ĝeneraligi la konceptojn de la fourier-a serio en terminoj de ajnaj perpendikularaj polinomoj kaj de la fourier-a konverto, kiu estas centra koncepto de funkcionala analitiko. Hilbertaj spacoj estas gravaj en matematika formulaĵo de kvantummekaniko.

Enkonduko

La eroj de abstrakta Hilberta spaco estas nomitaj kiel vektoroj. En aplikoj, ili estas tipe vicoj de kompleksaj nombrojfunkcioj. En kvantummekaniko ekzemple, fizika sistemo estas priskribita per kompleksa hilberta spaco kiu enhavas la ondfunkciojn por eblaj statoj de la sistemo. Vidu artikolon matematika formulaĵo de kvantummekaniko por detaloj. La Hilberta spaco de ebenaj ondoj kaj baraj statoj kutime estas uzata en kvantummekaniko estas rigita hilberta spaco.

Difino

Ĉiu ena produto <.,.> sur reelakompleksa vektora spaco H donas pligrandiĝon al normo ||.|| kiel:

H estas hilberta spaco se ĝi estas kompleta je ĉi tiu normo. Kompleteco en ĉi tiu ĉirkaŭteksto signifas ke ĉiu koŝia vico de eroj de la spaco konverĝas al ero en la spaco, en senco ke normo de diferencoj proksimiĝoj al nulo. Ĉiu hilberta spaco estas tial ankaŭ banaĥa spaco (sed ne ĉiam male banaĥa spaco estas hilberta spaco).

Ĉiuj finidimensiaj enprodutaj spacoj (kiel eŭklida spaco kun la ordinara skalara produto) estas hilbertaj spacoj. Tamen, la malfinidimensia ekzemploj pli gravaj en la jenaj aplikoj:

  • La teorio de unuargumentaj grupaj prezentoj
  • La teorio de kvadrataj integraleblaj stokastikoj
  • La hilberta spaca teorio de partaj diferencialaj ekvacioj, aparte je la dirichlet-a problemo
  • Spektra analitiko de funkcioj
  • Matematiko de kvantummekaniko


Vidu ankaŭ

  • Topologioj sur la aro de operatoroj sur hilberta spaco
  • Operatora algebro
  • Reproduktanta kerna hilberta spaco
  • Rigita hilberta spaco
  • Analitiko
  • Funkcionala analitiko
  • Fourier-a analizo


Ĉi tiu artikolo enhavas dume forkomentitajn partojn de la teksto, ĉar ili ankoraŭ ne estas sufiĉe bonaj. Vi povas redakti la paĝon kaj plibonigi kaj malkomenti la forkomentitajn partojn.
{{bottomLinkPreText}} {{bottomLinkText}}
Hilberta spaco
Listen to this article

This browser is not supported by Wikiwand :(
Wikiwand requires a browser with modern capabilities in order to provide you with the best reading experience.
Please download and use one of the following browsers:

This article was just edited, click to reload
This article has been deleted on Wikipedia (Why?)

Back to homepage

Please click Add in the dialog above
Please click Allow in the top-left corner,
then click Install Now in the dialog
Please click Open in the download dialog,
then click Install
Please click the "Downloads" icon in the Safari toolbar, open the first download in the list,
then click Install
{{::$root.activation.text}}

Install Wikiwand

Install on Chrome Install on Firefox
Don't forget to rate us

Tell your friends about Wikiwand!

Gmail Facebook Twitter Link

Enjoying Wikiwand?

Tell your friends and spread the love:
Share on Gmail Share on Facebook Share on Twitter Share on Buffer

Our magic isn't perfect

You can help our automatic cover photo selection by reporting an unsuitable photo.

This photo is visually disturbing This photo is not a good choice

Thank you for helping!


Your input will affect cover photo selection, along with input from other users.