For faster navigation, this Iframe is preloading the Wikiwand page for Hiperbolo.

Hiperbolo

El Vikipedio, la libera enciklopedio

Temas pri... Ĉi tiu artikolo temas pri matematika kurbo. Por aliaj signifoj vidu la artikolon Hiperbolo (apartigilo).
Ortangula hiperbolo: 
  
    
      
        y
        =
        
          
            1
            x
          
        
      
    
    {\displaystyle y={\frac {1}{x))}
Ortangula hiperbolo:

Hiperbolo estas koniko, kies punktoj ĉiuj staras tie, kiel la diferenco inter la distancoj al la du fokusoj konstantas. For de la (geometrio)j, la hiperbolo alproksimiĝas du rektoj, nomataj ĝiaj asimptotoj. Fakte, tiu funkcio bildiĝas per du apartaj kurboj (la du branĉoj de hiperbolo) inter la du asimptotoj.

En la karteziaj koordinatoj, la ekvacio de hiperbolo estas de la polinoma formo

Ax2 + Bxy + Cy2 + Dx + Ey + F = 0 (kie minumume unu el A, B, C ne estas nulo),

kun:

B2 - 4AC > 0 rezultiĝas hiperbolo,
se ankaŭ A + C = 0 rezultiĝas ortangula hiperbolo;

se B2 - 4AC = 0 rezultiĝas parabolo.

Estas aliaj formoj por priskribi elipson:

Kartezie ():


Poluse ():

En tiuj formuloj sec=sekanto kaj csc=kosekanto.

Vidu ankaŭ

Eksteraj ligiloj

{{bottomLinkPreText}} {{bottomLinkText}}
Hiperbolo
Listen to this article

This browser is not supported by Wikiwand :(
Wikiwand requires a browser with modern capabilities in order to provide you with the best reading experience.
Please download and use one of the following browsers:

This article was just edited, click to reload
This article has been deleted on Wikipedia (Why?)

Back to homepage

Please click Add in the dialog above
Please click Allow in the top-left corner,
then click Install Now in the dialog
Please click Open in the download dialog,
then click Install
Please click the "Downloads" icon in the Safari toolbar, open the first download in the list,
then click Install
{{::$root.activation.text}}

Install Wikiwand

Install on Chrome Install on Firefox
Don't forget to rate us

Tell your friends about Wikiwand!

Gmail Facebook Twitter Link

Enjoying Wikiwand?

Tell your friends and spread the love:
Share on Gmail Share on Facebook Share on Twitter Share on Buffer

Our magic isn't perfect

You can help our automatic cover photo selection by reporting an unsuitable photo.

This photo is visually disturbing This photo is not a good choice

Thank you for helping!


Your input will affect cover photo selection, along with input from other users.