For faster navigation, this Iframe is preloading the Wikiwand page for Izomorfio.

Izomorfio

El Vikipedio, la libera enciklopedio

Pri uzado de samradika vorto en sociologio, vidu artikolon izomorfeco (sociologio).

En matematiko, izomorfio (greka lingvo:_isos_ "egala", kaj _morphe_ "formo") estas tia dissurĵeto f inter du objektoj havantaj algebran strukturon de la sama tipo, ke kaj f, kaj ĝia inverso f −1 estas homomorfioj, t.e. strukturo-konservantaj funkcioj.

Neformale, izomorfio estas speco de funkcio inter objektoj, kiu montras strukturan similecon inter iliaj respektivaj ecoj aŭ/kaj operacioj. Se ekzistas izomorfio inter du strukturoj, oni nomas la du strukturojn izomorfaj. En certa senco, izomorfaj strukturoj estas strukture identaj - se oni malatentas pli subtilajn diferencojn, kiuj devenas de iliaj respektivaj difinoj, t.e. detalojn nerilatajn al la ecoj de konsiderata tipo de strukturo.

Celo

Izomorfioj estas ofte uzataj por malpligrandigi laboron pri studado de matematikaj objektoj. Se bona izomorfio povas troviĝi de relative nekonata parto de matematiko en iun pli bone studitan parton de matematiko, kie multaj teoremoj estas jam pruvitaj, kaj multaj metodoj estas jam haveblaj por trovi respondojn, do la funkcio povas esti inversigita por transigi problemojn el la unua parto en la duan kaj inverse.

Abstraktaj ekzemploj

Rilato-konserva izomorfio

Ekzemple, se unu objekto konsistas el aro X kun ordigo ≤ kaj la alia objekto konsistas de aro Y kun ordigo tiam izomorfio de X al Y estas dissurĵeto f : X → Y tia ke

se kaj nur se uv.

Tia izomorfio estas nomata orda izomorfio.

Vidu ankaŭ


Ĉi tiu artikolo enhavas dume forkomentitajn partojn de la teksto, ĉar ili ankoraŭ ne estas sufiĉe bonaj. Vi povas redakti la paĝon kaj plibonigi kaj malkomenti la forkomentitajn partojn.
{{bottomLinkPreText}} {{bottomLinkText}}
Izomorfio
Listen to this article

This browser is not supported by Wikiwand :(
Wikiwand requires a browser with modern capabilities in order to provide you with the best reading experience.
Please download and use one of the following browsers:

This article was just edited, click to reload
This article has been deleted on Wikipedia (Why?)

Back to homepage

Please click Add in the dialog above
Please click Allow in the top-left corner,
then click Install Now in the dialog
Please click Open in the download dialog,
then click Install
Please click the "Downloads" icon in the Safari toolbar, open the first download in the list,
then click Install
{{::$root.activation.text}}

Install Wikiwand

Install on Chrome Install on Firefox
Don't forget to rate us

Tell your friends about Wikiwand!

Gmail Facebook Twitter Link

Enjoying Wikiwand?

Tell your friends and spread the love:
Share on Gmail Share on Facebook Share on Twitter Share on Buffer

Our magic isn't perfect

You can help our automatic cover photo selection by reporting an unsuitable photo.

This photo is visually disturbing This photo is not a good choice

Thank you for helping!


Your input will affect cover photo selection, along with input from other users.