For faster navigation, this Iframe is preloading the Wikiwand page for Kompleksa konjugito.

Kompleksa konjugito

El Vikipedio, la libera enciklopedio

La kompleksa ebeno. La kompleksa nombro z = x+iy kaj ĝia kompleksa konjugito 
  
    
      
        
          
            
              z
              ¯
            
          
        
      
    
    {\displaystyle {\bar {z))}
  
=x-iy.
La kompleksa ebeno. La kompleksa nombro z = x+iy kaj ĝia kompleksa konjugito =x-iy.

En matematiko, la kompleksa konjugito de kompleksa nombro estas donita per ŝanĝanta la signumo de la imaginara parto. Tial, la konjugita de la kompleksa nombro (kie a kaj b estas reelaj nombroj) estas difinita kiel . La kompleksa konjugito de nombro z povas esti signifita per:

La simbolo povas ankaŭ signifi la konjugitan transponon de matrico A do atento devas esti por ne konfuzi la skribmanierojn. Se kompleksa nombro estas traktata kiel 1×1 vektoro, la skribmanieroj estas identaj.

Ekzemple, , kaj .

Oni kutime pensas kompleksajn nombrojn kiel punktoj en kompleksa ebeno kun kartezia koordinato. La x-akso enhavas la reelaj nombroj kaj la y-akso enhavas la obloj de i. En ĉi tiu vido, kompleksa konjugo korespondas al reflekto kun la x-akso kiel la simetria akso.

En trigonometria prezento la konjugita de estas donita kiel .

Ecoj

Estu z kaj w iuj ajn kompleksaj nombroj. Do:

se w ne estas 0
se kaj nur se z estas reela
se z ne estas 0

Se p estas polinomo kun reelaj koeficientoj, kaj , tiam . Tial ne-reelaj radikoj de reelaj polinomoj ĉiam aperas en kompleksaj konjugitaj paroj.

La funkcio de C al C estas kontinua. Tamen, kvankam ĝi ŝajnas "bonkonduta" funkcio, ĝi ne estas holomorfa; alivorte, ĝi ne havas derivaĵon en la senco uzata en kompleksa analitiko.

Vidu ankaŭ

{{bottomLinkPreText}} {{bottomLinkText}}
Kompleksa konjugito
Listen to this article

This browser is not supported by Wikiwand :(
Wikiwand requires a browser with modern capabilities in order to provide you with the best reading experience.
Please download and use one of the following browsers:

This article was just edited, click to reload
This article has been deleted on Wikipedia (Why?)

Back to homepage

Please click Add in the dialog above
Please click Allow in the top-left corner,
then click Install Now in the dialog
Please click Open in the download dialog,
then click Install
Please click the "Downloads" icon in the Safari toolbar, open the first download in the list,
then click Install
{{::$root.activation.text}}

Install Wikiwand

Install on Chrome Install on Firefox
Don't forget to rate us

Tell your friends about Wikiwand!

Gmail Facebook Twitter Link

Enjoying Wikiwand?

Tell your friends and spread the love:
Share on Gmail Share on Facebook Share on Twitter Share on Buffer

Our magic isn't perfect

You can help our automatic cover photo selection by reporting an unsuitable photo.

This photo is visually disturbing This photo is not a good choice

Thank you for helping!


Your input will affect cover photo selection, along with input from other users.