For faster navigation, this Iframe is preloading the Wikiwand page for Unuoglobo.

Unuoglobo

El Vikipedio, la libera enciklopedio

Iuj unuosferoj en eŭklida spaco.
Iuj unuosferoj en eŭklida spaco.

En matematiko, unuosfero estas la aro de punktoj je distanco 1 de fiksita centra punkto; ĝeneraligita koncepto de distanco povas esti uzata. unuoglobo estas la regiono ene de unuosfero. Kutime specifa punkto estas distingita kiel la fonto de la spaco por studi kaj unuosfero aŭ unuoglobo estas centrita je tiu punkto. Pro tio oni parolas pri "la" unuoglobo aŭ "la" unuosfero.

Unuosfero estas simple sfero de radiuso unu. La graveco de la unuosfero estas je tio ke ĉiu sfero povas esti konvertita en la unuosferon per kombinaĵo de translacio kaj homotetio. Tiamaniere propraĵoj de sferoj ĝenerale povas esti uzataj por studi unuosferon.

Unuogloboj en eŭklida spaco

En eŭklida spaco de n dimensioj, la unuosfero estas aro de ĉiuj punktoj kiu kontentigas ekvacion

kaj la fermita unuoglobo estas aro de ĉiuj punktoj kontentigantaj neegalaĵon

Formuloj de areo kaj volumeno

Volumeno de unuoglobo en n-dimensia eŭklida spaco kaj surfaca areo de unuosfero aperas en multaj gravaj formuloj de analitiko. La surfaca areo de unuosfero en n dimensioj, ofte skribita kiel , povas esti esprimita per uzo de la Γ funkcio. Ĝi estas

.

La volumeno de la unuoglobo estas .

Unuogloboj en normigitaj vektoraj spacoj

La malfermita unuoglobo en normigita vektora spaco , kun la normo , estas

.

Ĝi estas la eno de la fermita unuoglobo de (V,||·||),

.

La lasta estas unio de la antaŭa kaj ilia komuna rando, la unuosfero de (V,||·||),

.

Komentoj

La 'formo' de la unuoglobo estas tute dependa de la elektita normo; ĝi povas havi 'angulojn', kaj ekzemple povas aspekti kiel [−1,1]n en okazo de normo l en Rn. La ronda globo estas farita de la kutima hilberta spaca normo, kiu estas en la finia dimensia okazo la samo kiel eŭklida distanco; ĝia rando estas kio estas kutime intencita per la unuosfero.

Ĝeneraligo al metrikaj spacoj

Ĉiuj tri el la pli supraj difinoj povas esti simple ĝeneraligitaj al metrika spaco, kun respekto al la elektita fonto. Tamen, topologiaj konsideroj (eno, fermaĵo, rando) povas ne aplikiĝi sammaniere (ekzemple, en mezuregaj spacoj, ĉiuj el la triopo estas samtempe malfermitaj kaj fermitaj aroj), kaj la unuosfero povas eĉ esti malplena en iuj metrikaj spacoj.

Vidu ankaŭ

{{bottomLinkPreText}} {{bottomLinkText}}
Unuoglobo
Listen to this article

This browser is not supported by Wikiwand :(
Wikiwand requires a browser with modern capabilities in order to provide you with the best reading experience.
Please download and use one of the following browsers:

This article was just edited, click to reload
This article has been deleted on Wikipedia (Why?)

Back to homepage

Please click Add in the dialog above
Please click Allow in the top-left corner,
then click Install Now in the dialog
Please click Open in the download dialog,
then click Install
Please click the "Downloads" icon in the Safari toolbar, open the first download in the list,
then click Install
{{::$root.activation.text}}

Install Wikiwand

Install on Chrome Install on Firefox
Don't forget to rate us

Tell your friends about Wikiwand!

Gmail Facebook Twitter Link

Enjoying Wikiwand?

Tell your friends and spread the love:
Share on Gmail Share on Facebook Share on Twitter Share on Buffer

Our magic isn't perfect

You can help our automatic cover photo selection by reporting an unsuitable photo.

This photo is visually disturbing This photo is not a good choice

Thank you for helping!


Your input will affect cover photo selection, along with input from other users.