Barita funkcio

From Wikipedia, the free encyclopedia

En matematiko, funkcio f difinita sur iu aro X kun reelakompleksa valoro estas nomita kiel barita, se la aro de ĝiaj valoroj estas barita. En alia vortoj, ekzistas nombro M>0 tia ke

Pliaj informoj Matematikaj funkcioj, Fundamentaj funkcioj ...
Fermi

por ĉiuj x en X.

La koncepto devas ne esti konfuzita kun barita operatoro.

Grava speciala okazo estas barita vico, kie X estas aro N de naturaj nombroj. Tial vico f = ( a0, a1, a2, … ) estas barita se ekzistas nombro M > 0 tia ke

|an| ≤ M

por ĉiu natura nombro n. Aro de ĉiuj baritaj vicoj, ekipita kun vektora spaca strukturo, formas vican spacon.

Ĉi tiu difino povas esti etendita al funkcioj kun valoroj en metrika spaco Y. Tiam la neegalaĵo pli supre estas anstataŭigita per

por iu a en Y, M>0, kaj por ĉiuj x en X.

Ekzemploj

  • La funkcio f:RR difinita per f (x)=sin x estas barita. La sinusa funkcio estas ne barita se ĝi estas difinita sur la aro de ĉiuj kompleksaj nombroj.
  • La funkcio

difinita por ĉiuj reelaj x kiuj ne egalas al −1 kaj 1 estas ne barita. Se x prenas proksiĝas al −1 aŭ al 1, valoro de ĉi tiu funkcio malfinie pligrandiĝas. Ĉi tiu funkcio povas esti farita barita se oni konsideras ĝian domajnon ekzemple [2, ∞).

  • La funkcio

difinita por ĉiuj reelaj x estas barita.

  • Ĉiu kontinua funkcio f:[0,1] → R estas barita. Ĉi tiu estas speciala okazo de pli ĝenerala fakto: Ĉiu kontinua funkcio de kompakta spaco en metrikan spacon estas barita.
  • La funkcio f kiu prenas la valoro 0 por x racionala nombro kaj 1 por x neracionala nombro estas barita. Tial, funkcio ne devas esti kontinua por ke esti barita. La aro de ĉiuj baritaj funkcioj difinitaj sur [0,1] estas multe pli granda ol la aro de kontinuaj funkcioj sur la intervalo.
Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.