Pra-Lie-alĝebro

From Wikipedia, the free encyclopedia

Remove ads

En algebro, pra-Lie-alĝebro estas ĝeneraligo de la koncepto de asocieca alĝebro, plenumanta malfortigitan aksiomon de asocieco, kies komutilo tamen plenumas la aksiomon de alĝebro de Lie.[1]

Laŭ la usona fizikisto John Baez,

Citaĵo
 “Pra-Lie-alĝebro” sugestas alĝebron de Lie kun kelkaj kruroj fortiritaj. Sed efektive ĝi estas asocieca alĝebro kun kelkaj kruroj fortiritaj! Ĉiu asocieca algebro donas alĝebron de Lie — sed oni ne bezonas la plenan forton de la asocieca leĝo por ludi ĉi tiun ludon. Sufiĉas pra-Lie-alĝebro.” 
 John Baez[2]
Remove ads

Difino

Supozu ke estas komuta ringo. Do, dekstra pra-Lie-alĝebro super estas -modulo ekipita per dulineara operacio

plenumanta la jenan aksiomon:

.

En la ĉi-supra aksiomo, estas la asociilo

.

La maldekstra pra-Lie-alĝebro estas simile -modulo ekipita per dulineara operacio

plenumanta la malan aksiomon:

.
Remove ads

Ecoj

Dekstra (aŭ maldekstra) pra-Lie-alĝebro povas esti rigardata kiel alĝebro de Lie, se oni difinas la Lie-krampon kiel la komutilon:

.
Remove ads

Ekzemploj

Asocieca alĝebro (eble sen unuo) estas kaj dekstra pra-Lie-alĝebro kaj maldekstra pra-Lie-alĝebro, ĉar la asociilo simple nulas.

Historio

La koncepton pre-Lie-alĝebro enkondukis la usona matematikisto Murray Gerstenhaber (1927–).

Referencoj

Eksteraj ligiloj

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads