Top Qs
Línea de tiempo
Chat
Contexto

Índice (teoría de grupos)

concepto en álgebra abstracta De Wikipedia, la enciclopedia libre

Remove ads

En álgebra abstracta (específicamente en teoría de grupos), el índice de un subgrupo H en un grupo G se refiere al número de clases laterales en que un subgrupo H particiona a G.

Introducción

[1] Cada subgrupo H de G permite definir dos relaciones de equivalencia sobre G, denotadas por (equivalencia por la izquierda) y (equivalencia por la derecha). Se definen como:

Las llamadas clases laterales son las clases de equivalencia definidas por estas relaciones. Se denotan como en el caso de , o bien como para . Las respectivas particiones de G son denotadas por G:H y H:G. Es decir:

Remove ads

Definición

Resumir
Contexto

Sea G un grupo y sea un subgrupo de G. Al cardinal

se le denomina índice de H en G. Otras notaciones frecuentes para son o también .

En el caso de que G sea finito, tenemos la identidad:

donde se ha utilizado la notación clásica, |G|, para el orden de un grupo.

Remove ads

Referencias

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads