Top Qs
Línea de tiempo
Chat
Contexto

Espacio proyectivo complejo

De Wikipedia, la enciclopedia libre

Remove ads

En matemáticas, se le llama espacio proyectivo complejo al espacio de las líneas complejas de Cn+1 que pasan por el origen. Normalmente se nota por P(Cn+1), Pn(C) o CPn

Constituye una variedad compleja compacta de dimensión compleja n definida identificando los puntos proporcionales de Cn+1-{0} mediante la siguiente relación de equivalencia:

Remove ads

Topología

Resumir
Contexto

Sea la proyección que lleva cada z en su clase de equivalencia. Dotamos a CPn de la topología cociente, de modo que es abierto si y sólo si lo es. Esta topología convierte a la proyección en una aplicación continua.

CPn es compacto y conexo

Para ello basta observar que es imagen por una aplicación continua de la esfera real S2n+1. En concreto por la composición de aplicaciones dada por

,

Esta aplicación es sobreyectiva pues toda línea pasa por un punto de S2n+1.

Remove ads

Estructura compleja

Resumir
Contexto

Podemos construir un atlas mediante las cartas definidas por:

donde por ^ debemos entender que no aparece la entrada correspondiente.

Si , se comprueba que el cambio de cartas es holomorfo.

Remove ads

Subespacios lineales de CPn

Toda inclusión del tipo Ck+1Cn+1 induce una inclusión entre los proyectivos correspondientes CPkCPn. A la imagen de esta aplicación se le denomina subespacio lineal de CPn.

Si k = n-1, a la imagen de esta aplicación se le denomina hiperplano de CPn. Si k = 1, de su imagen se dice que es una línea del mismo.

Referencias

  • P. Griffiths y J. Harris. Principles of algebraic geometry. John Wiley & Sons, 1978. ISBN 0-471-32792-1 . (Cap. 2)

Véase también

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads