Top Qs
Línea de tiempo
Chat
Contexto

Fibrado de Seifert

De Wikipedia, la enciclopedia libre

Remove ads

Un fibrado de Seifert es una 3-variedad que se obtiene construyendo un fibrado del tipo

donde es un orbifold que admite conos pero no líneas reflectoras (reflector lines). Esto último significa que es localmente un producto donde es un conjunto abierto de salvo en una cantidad finita de puntos excepcionales para los cuales hay discos (vecindades) , uno para cada , disjuntos, tales que la fibración por ya no es trivial igual a (fibraciones no triviales de toros sólidos).

Para obtener una fibración no trivial en un toro sólido, primero cortamos este en un disco meridional. Luego en este cilindro sólido damos un giro de y después pegamos los extremos obteniendo un toro sólido fibrado por círculos -veces más largos salvo el círculo determinado por el centro del disco.

Remove ads

Clasificación

Resumir
Contexto

La siguiente tabla es un diccionario bilingüe entre la primera clasificación original de H. Seifert en 1933 y la 1968-moderna de P. Orlik-F. Raymond

Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «http://localhost:6011/es.wikipedia.org/v1/»:): {\displaystyle n_1 = NnI}
Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «http://localhost:6011/es.wikipedia.org/v1/»:): {\displaystyle n_3 = NnII}
Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «http://localhost:6011/es.wikipedia.org/v1/»:): {\displaystyle n_4 = NnIII}

He aquí los once primeros SFS cuya caractéristica de Euler del orbifold es χ>0:

    1. Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «http://localhost:6011/es.wikipedia.org/v1/»:): {\displaystyle (Oo,0|b)\,} : los cuales son (Oo,0|0)=Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «http://localhost:6011/es.wikipedia.org/v1/»:): {\displaystyle S^2\times S^1} , (Oo,0|1)=Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «http://localhost:6011/es.wikipedia.org/v1/»:): {\displaystyle S^3} . Y si b>1 entonces (Oo,0|b)=L(b,1) son espacios lentes no triviales.
    2. Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «http://localhost:6011/es.wikipedia.org/v1/»:): {\displaystyle (Oo,0|b:(a_1,b_1))=L(ba_1+b_1,a_1),\,}
    3. Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «http://localhost:6011/es.wikipedia.org/v1/»:): {\displaystyle (Oo,0|b:(a_1,b_1),(a_2,b_2))\,}
    4. Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «http://localhost:6011/es.wikipedia.org/v1/»:): {\displaystyle (Oo,0|b:(2,1),(2,1),(a_3,b_3))\,}
    5. Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «http://localhost:6011/es.wikipedia.org/v1/»:): {\displaystyle (Oo,0|b:(2,1),(3,b_2),(3,b_3))\,}
    6. Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «http://localhost:6011/es.wikipedia.org/v1/»:): {\displaystyle (Oo,0|b:(2,1),(3,b_2),(4,b_3))\,}
    7. Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «http://localhost:6011/es.wikipedia.org/v1/»:): {\displaystyle (Oo,0|b:(2,1),(3,b_2),(5,b_3))=(Oo,0|-1:(2,1),(3,1),(5,1))\,} es la esfera de Poincaré
    8. Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «http://localhost:6011/es.wikipedia.org/v1/»:): {\displaystyle (NnI,1|b)\,} : son dos; Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «http://localhost:6011/es.wikipedia.org/v1/»:): {\displaystyle \mathbb{RP}^2\times S^1} y el fibrado por la esfera Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «http://localhost:6011/es.wikipedia.org/v1/»:): {\displaystyle S^2} no trivial sobre el círculo: Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «http://localhost:6011/es.wikipedia.org/v1/»:): {\displaystyle S^2\otimes S^1} .
    9. Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «http://localhost:6011/es.wikipedia.org/v1/»:): {\displaystyle (NnI,1|b:(a_1,b_1))\,} : son; Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «http://localhost:6011/es.wikipedia.org/v1/»:): {\displaystyle \mathbb{RP}^2\times S^1} cuando Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «http://localhost:6011/es.wikipedia.org/v1/»:): {\displaystyle ba_1+b_1} es par, y Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «http://localhost:6011/es.wikipedia.org/v1/»:): {\displaystyle S^2\otimes S^1} cuando Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «http://localhost:6011/es.wikipedia.org/v1/»:): {\displaystyle ba_1+b_1} es impar.
    10. Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «http://localhost:6011/es.wikipedia.org/v1/»:): {\displaystyle (On,1|b:)\,} : es una prisma-variedad.
    11. Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «http://localhost:6011/es.wikipedia.org/v1/»:): {\displaystyle (Oo,0|b:(a_1,b_1))\,} : también.

Ahora los siguientes 11 que cumplen χ=0:

    1. Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «http://localhost:6011/es.wikipedia.org/v1/»:): {\displaystyle (Oo,0|b:(3,b_1),(3,b_2),(3,b_3,))\,}
    2. Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «http://localhost:6011/es.wikipedia.org/v1/»:): {\displaystyle (Oo,0|b:(2,1),(4,1),(4,b_3))\,}
    3. Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «http://localhost:6011/es.wikipedia.org/v1/»:): {\displaystyle (Oo,0|b:(2,1),(3,b_2),(6,b_3))\,}
    4. Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «http://localhost:6011/es.wikipedia.org/v1/»:): {\displaystyle (Oo,0|b:(2,1),(2,1)(2,1),(2,1),(2,1))\,}
    5. Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «http://localhost:6011/es.wikipedia.org/v1/»:): {\displaystyle (Oo,1|b)\,} : con b=1 esto es el producto trivial Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «http://localhost:6011/es.wikipedia.org/v1/»:): {\displaystyle T\times S^1}
    6. Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «http://localhost:6011/es.wikipedia.org/v1/»:): {\displaystyle (No,1|b))\,}
    7. Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «http://localhost:6011/es.wikipedia.org/v1/»:): {\displaystyle (NnI,1|0:(2,1),(2,1))\,}
    8. Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «http://localhost:6011/es.wikipedia.org/v1/»:): {\displaystyle (NnI,2|b)\,} : son dos K-fibrados sobre el círculo. Para b=0 es Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «http://localhost:6011/es.wikipedia.org/v1/»:): {\displaystyle K\times S^1} . Y para b=1 es Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «http://localhost:6011/es.wikipedia.org/v1/»:): {\displaystyle K\times_tS^1} , donde t es el único giro de Dehn de K.
    9. Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «http://localhost:6011/es.wikipedia.org/v1/»:): {\displaystyle (On,1|b:(2,1),(2,1))\,}
    10. Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «http://localhost:6011/es.wikipedia.org/v1/»:): {\displaystyle (On,2|b)\,}
    11. Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «http://localhost:6011/es.wikipedia.org/v1/»:): {\displaystyle (NnII,2|b)\,} : son dos K-fibrados sobre el círculo Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «http://localhost:6011/es.wikipedia.org/v1/»:): {\displaystyle K\times_fS^1} con las respectivas monodromías Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «http://localhost:6011/es.wikipedia.org/v1/»:): {\displaystyle f} el y-homeomorfismo y el y-homeomorfismo compuesto con el único giro de Dehn en la botella de Klein K.
Remove ads

Enlaces externos

Para un tratado más técnico favor de dirigirse a:

ftp://ftp.math.binghamton.edu/pub/matt/seifert.pdf (enlace roto disponible en Internet Archive; véase el historial, la primera versión y la última).

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads