Top Qs
Línea de tiempo
Chat
Contexto

Función lipschitziana

De Wikipedia, la enciclopedia libre

Remove ads

En matemática, una función f : MN entre espacios métricos (M,dM) y (N,dN) se dice que es lipschitziana (o se dice que satisface una condición de Lipschitz o que es Lipschitz continua) si existe una constante K > 0 tal que:[1]

En tal caso, K es llamada la constante Lipschitz de la función. El nombre viene del matemático alemán Rudolf Lipschitz. Para funciones definidas sobre espacios euclídeos la relación anterior puede escribirse:

Remove ads

Características y resultados principales


Remove ads

Definiciones relacionadas

Resumir
Contexto

Estas definiciones se requieren en el Teorema de Picard-Lindelöf y en resultados relacionados con él.

  • Localidad Lipschitz: Dados M, N, espacios métricos, se dice que una función es localmente lipschitz si para todo punto de M existe un entorno donde la función cumple la condición Lipschitz.
  • Función Lipschitz respecto una variable: Dados M, N, L espacios métricos, se dice que una función es localmente Lipschitz respecto si cumple la condición Lipschitz para puntos de N.
Remove ads

Referencias

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads