Top Qs
Línea de tiempo
Chat
Contexto

Logaritmo en base imaginaria

De Wikipedia, la enciclopedia libre

Remove ads

Un logaritmo en base imaginaria es un logaritmo que tiene como base un número complejo , a +bi. Se va a tratar el caso elemental , para i la unidad imaginaria.A pesar de que calcular este tipo de logaritmos no sea una tarea intuitiva, se puede generalizar la operación de logaritmo de base imaginaria mediante la fórmula siguiente:[cita requerida]

Dónde z es cualquier número complejo excepto 0.

Remove ads

Demostración de la fórmula

Resumir
Contexto

A partir de la fórmula de Euler, sabemos que:

Aplicando logaritmo natural en ambos miembros resulta:

Cambiando la base queda demostrado que:

Conviene señalar que la definición anterior es en cierto sentido convencional ya que el logaritmo tal como se ha definido anteriormente no es la única elección posible, ya que de partida se tiene:

Y por tanto cabrían definiciones alternativas como:

Remove ads

Múltiplos de bases i

Resumir
Contexto

Si la base es un múltiplo de i, la fórmula puede ser generalizada así:

Dónde k es cualquier número real.

Esto puede ser demostrado como:

Remove ads

Véase también

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads