Una función f (de orden 1) mayor a una g (de orden n) si y solo si: f ( m a x ( x 1 , x 2 , . . , x n ) ) ≥ g ( x 1 , x 2 , . . , x n ) {\displaystyle f(max(x_{1},x_{2},..,x_{n}))\geq g(x_{1},x_{2},..,x_{n})} Notación: f ( 1 ) → g ( n ) {\displaystyle f^{(1)}\to g^{(n)}} Remove adsTeoremas referidos a la mayoraciónResumirContexto Toda función recursiva primitiva está mayorada por la función de Ackermann. Recordemos las propiedades de la función de Ackermann: S e a k ∈ N , f k ∈ F R P {\displaystyle Sea\;k\in \mathbb {N} ,\;f_{k}\in FRP} (1) S e a a > b , f k ( a ) > f k ( b ) {\displaystyle Sea\;a>b,\;f_{k}(a)>f_{k}(b)} (2) S e a x , k ∈ N , f k ( x ) > x {\displaystyle Sea\;x,k\in \mathbb {N} ,\;f_{k}(x)>x} (3) S e a k ∈ N , f k + 1 ( x ) > f k ( x ) {\displaystyle Sea\;k\in \mathbb {N} ,\;f_{k+1}(x)>f_{k}(x)} (4) Lemas Lema (A) Las funciones recursivas base está mayoradas por f 0 {\displaystyle f_{0}} Sea X = x 1 , x 2 , . . , x n {\displaystyle X=x_{1},x_{2},..,x_{n}} Demostración: f 0 ( x ) = s ( x ) ≥ s ( x ) {\displaystyle f_{0}(x)=s(x)\geq s(x)} f 0 ( x ) = s ( x ) ≥ 0 = z ( x ) {\displaystyle f_{0}(x)=s(x)\geq 0=z(x)} f 0 ( M a x ( X ) ) = s ( M a x ( X ) ) ≥ x j = p j ( n ) ( X ) {\displaystyle f_{0}(Max(X))=s(Max(X))\geq x_{j}=p_{j}^{(n)}(X)} Lema (B) Si f k → I ( n ) y f k → h i ( m ) c o n i = 1.. m ( 2 ) {\displaystyle f_{k}\to I^{(n)}\;y\;f_{k}\to h_{i}^{(m)}\;con\;i\;=\;1..m(2)} entonces f k + 1 → ϕ ( I ( n ) , h 1 ( m ) , h 2 ( m ) , . . . , h m ( m ) ) {\displaystyle f_{k+1}\to \phi \ (I^{(n)},h_{1}^{(m)},h_{2}^{(m)},...,h_{m}^{(m)})} Demostración: Si f k → h i ( m ) c o n i = 1.. m {\displaystyle f_{k}\to h_{i}^{(m)}\;con\;i\;=1..m} entonces M a x ( h 1 ( X ) , h 2 ( X ) , . . , h n ( X ) ) ≤ f k ( M a x ( X ) ) {\displaystyle Max(h_{1}(X),h_{2}(X),..,h_{n}(X))\leq f_{k}(Max(X))} Entonces, ϕ ( I , h 1 , h 2 , . . . , h m ) ( X ) = I ( h 1 ( X ) , h 2 ( X ) , . . . , h m ( X ) ) {\displaystyle \phi \ (I,h_{1},h_{2},...,h_{m})(X)=I(h_{1}(X),h_{2}(X),...,h_{m}(X))} Usando la hipótesis y f k {\displaystyle f^{k}} es creciente (2). f k ( M a x ( h 1 ( X ) , h 2 ( X ) , . . , h n ( X ) ) ) ≤ f k ( f k ( M a x ( X ) ) ) {\displaystyle f_{k}(Max(h_{1}(X),h_{2}(X),..,h_{n}(X)))\leq f_{k}(f_{k}(Max(X)))} Por definición de función potencia: f k ( f k ( M a x ( X ) ) ) = f k 2 ( M a x ( X ) ) {\displaystyle f_{k}(f_{k}(Max(X)))=f_{k}^{2}(Max(X))} Aplicando (4) varias veces ... f k 2 ( M a x ( X ) ) ≤ f k ( 2 + 1 ) ( M a x ( X ) ) ≤ . . ≤ f k ( 2 + M a x ( X ) ) ( M a x ( X ) ) {\displaystyle f_{k}^{2}(Max(X))\leq f_{k}^{(2+1)}(Max(X))\leq ..\leq f_{k}^{(2+Max(X))}(Max(X))} Por definición: f k ( 2 + M a x ( X ) ) ( M a x ( X ) ) = f k + 1 ( M a x ( X ) ) {\displaystyle f_{k}^{(2+Max(X))}(Max(X))=f_{k+1}(Max(X))} Por lo tanto, f k + 1 → ϕ ( I ( n ) , h 1 ( m ) , h 2 ( m ) , . . . , h m ( m ) ) {\displaystyle f_{k+1}\to \phi \ (I^{(n)},h_{1}^{(m)},h_{2}^{(m)},...,h_{m}^{(m)})} Datos: Q6007705 Remove adsLoading related searches...Wikiwand - on Seamless Wikipedia browsing. On steroids.Remove ads