Loading AI tools
De Wikipedia, la enciclopedia libre
Un perfil doble T (o perfil I o H) es un perfil laminado o armado cuya sección transversal está formada por dos alas y un alma de unión entre ellas. Generalmente se usan como vigas de flexión, cuando los esfuerzos de torsión son pequeños.
Existen diversos tipos de perfil doble T normalizado los más importantes:
Todos los perfiles doble T presentan un buen comportamiento para la flexión provocada por un momento flector cuya dirección vectorial sea perpendicular al alma central. De hecho, en esa situación los perfiles doble T constituyen una solución muy económica. Por esa razón los perfiles doble T se usan para vigas en flexión recta.
Sin embargo, los perfiles doble T no tienen tan buen comportamiento para un momento flector perpendicular a las alas o en casos de flexión esviada. Sin embargo, el principal problema resistente que presentan es su escasa resistencia frente a torsión. En casos de torsión grande es recomendable usar perfiles macizos o perfiles cerrados huecos. Otro hecho que debe tenerse en cuenta es que cuando un perfil doble T se somete a torsión sufre alabeo seccional, por lo que a la hora de calcular las tensiones es importante tener en cuenta el módulo de alabeo y el bimomento que sufre el perfil.
Las características resistentes relacionan los esfuerzos internos sobre una sección con las tensiones existentes sobre ella. El cálculo de los perfiles adecuados requiere por tanto conocer las características geométricas y resistentes. Por ejemplo en un perfil doble T asimétrico el centro de gravedad estará más cerca del ala grande, tomando como referencia la figura Fig 1, el centro de gravedad y el centro de cortante están situados a una altura:
El área y las áreas de cortante vienen dadas por:
Las características flexionales relevantes para el cálculo son los momentos de inercia (respecto al centro de gravedad y según ejes principales de inercia) y los momentos resistentes de flexión, que pueden calcularse sin dificultad a partir del teorema de Steiner.
Las características torsionales necesarias para el cálculo son el módulo de torsión (J), el momento de alabeo (Iω) y el momento resistente de torsión:[1]
Si la sección es simétrica es decir si entonces varias de las fórmulas anteriores se simplifcan notablemente:
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.