Diferentsiaalarvutus
From Wikipedia, the free encyclopedia
Diferentsiaalarvutus on üks matemaatilise analüüsi põhikomponente integraalarvutuse kõrval (et nad on omavahel tihedalt seotud, siis nimetatakse neid koos diferentsiaal- ja integraalarvutuseks). Diferentsiaalarvutuse keskne teema on funktsiooni lokaalne muutumine.

Selleks kasutatakse funktsiooni tuletise mõistet, mis on diferentsiaalarvutuse põhimõiste. Selle geomeetriline vaste on funktsiooni graafiku puutuja tõus. Tuletis on (Leibnizi ettekujutuse järgi) võrdelisustegur argumendi väärtuse lõpmata väikeste muutude ja funktsiooni väärtuse lõpmata väikeste muutude vahel. Kui niisugune võrdelisustegur (mingil kohal) eksisteerib, siis nimetatakse funktsiooni (sellel kohal) diferentseeruvaks funktsiooniks. Samaväärselt võib tuletist mingil kohal defineerida selle lineaarfunktsioonina, mis lähendab funktsiooni lokaalselt teistest lineaarfunktsioonidest paremini. Sellepärast nimetatakse tuletist ka funktsiooni linearisatsiooniks.
Paljudel juhtudel on diferentsiaalarvutuse kasutamine tegelikkust võimalikult täpselt kujutavate matemaatiliste mudelite konstrueerimisel ja järgneval analüüsimisel möödapääsmatu. Sageli vastab tuletisele tegelikkuses muutumise hetkkiirus, majandusteaduses ka näiteks piirkulud ja piirtootlikkus.
Geomeetria seisukohast on tuletis tõusu üldistus. Tõus on algselt defineeritud ainult lineaarfunktsioonide jaoks (nende graafik on sirge). Suvalise funktsiooni tuletist kohal defineeritakse funktsiooni
graafiku puutuja tõusuna punktis
.
Aritmeetika seisukohast ütleb funktsiooni tuletis iga koha
kohta, kui suur on funktsiooni
muudu lineaarosa (1. järku muut), kui argumendi
väärtuse muut
on kui tahes väike. Selle asjaolu täpseks formuleerimiseks kasutatakse piirväärtuse mõistet.
Klassikalises füüsikalises rakenduses näitab ajast sõltuva koha- või teepikkusefunktsiooni tuletis osakese hetkkiirust. Hetkkiiruse tuletis aja järgi näitab hetkkiirendust.