For faster navigation, this Iframe is preloading the Wikiwand page for Meetriline ruum.

Meetriline ruum

Allikas: Vikipeedia

Matemaatikas nimetatakse meetriliseks ruumiks hulka, milles elementide vahel on antud kaugus. Kujutust, mis elementidele kauguse annab, nimetatakse meetrikaks. Kauguse mõiste järgib selle intuitiivset käsitust (lähtub kauguse mõistest füüsikalises ruumis) ning täidab järgmisi tingimusi:

  1. Punktide kaugus on null parajasti siis, kui tegemist on samade punktidega.
  2. Punkt A on punktist B alati samal kaugusel, kui punkt B punktist A.
  3. Punkti A kaugus otse punktini B pole kunagi pikem, kui A kaugus punktini B läbi mingi punkti C.

Neid tingimusi nimetatakse meetrika aksioomideks.

Definitsioon

Matemaatilise analüüsi üks olulisemaid mõisteid on jada koonduvus. Arvjadade, aga ka näiteks tasandi või ruumi punktidest moodustatud jadade koonduvuse mõiste tugineb asjaolule, et arvsirgel, tasandil või ruumis on olemas punktide vaheline kaugus. Idee defineerida elementidevaheline kaugus suvaliste hulkade jaoks viib meetrilise ruumi mõisteni.

Hulka nimetatakse meetriliseks ruumiks, kui igale selle elementide paarile on vastavusse seatud reaalarv , mida nimetatakse x ja y vaheliseks kauguseks, nii, et on täidetud tingimused:

  1. (samasuse aksioom ehk identsuse aksioom)
  2. (sümmeetria aksioom)
  3. (kolmnurga aksioom ehk kolmnurga võrratus).

Neid tingimusi nimetatakse meetrika aksioomideks ning kujutust ρ nimetatakse meetrikaks.

Aksioomidest järeldub, et kaugus ei saa olla negatiivne:

Kauguse mittenegatiivsus lisatakse mõnikord lisatingimusena meetrilise ruumi aksiomaatikasse.

Rõhutamaks, et on hulgal defineeritud meetrika, tähistatakse vastavat meetrilist ruumi järjestatud paarina . Viimane tähistus on korrektsem, kuid üldjuhul nimetatakse meetriliseks ruumiks siiski vaid vastavat hulka eeldades, et selline tähistus on kontekstist arusaadav.

Alamruumid

Meetrilised ruumid ⊃ Normeeritud ruumidBanachi ruumidHilberti ruumidEukleidilised ruumid

Seos normeeritud ruumidega

Normeeritud ruumiks nimetatakse vektorruumi V, mille igale elemendile v on vastavusse seatud reaalarv - norm ||v||. Iga normeeritud ruum on ühtlasi meetriline ruum, meetrikaga ρ(v,w) = ||v - w||, kuid vastupidine üldjuhul ei kehti. Saab näidata, et meetriline ruum on normeeritud ruum parajasti siis, kui see ühildub vektorruumi tehetega. See tähendab, et lisaks meetrika aksioomidele on suvaliste vektorite u, v, wV ja skalaari a jaoks täidetud veel tingimused

  1. (nihkeinvariantsus),
  2. (homogeensus).

Sellise meetrika kaudu saab defineerida normi, kui

Vaata ka

{{bottomLinkPreText}} {{bottomLinkText}}
Meetriline ruum
Listen to this article

This browser is not supported by Wikiwand :(
Wikiwand requires a browser with modern capabilities in order to provide you with the best reading experience.
Please download and use one of the following browsers:

This article was just edited, click to reload
This article has been deleted on Wikipedia (Why?)

Back to homepage

Please click Add in the dialog above
Please click Allow in the top-left corner,
then click Install Now in the dialog
Please click Open in the download dialog,
then click Install
Please click the "Downloads" icon in the Safari toolbar, open the first download in the list,
then click Install
{{::$root.activation.text}}

Install Wikiwand

Install on Chrome Install on Firefox
Don't forget to rate us

Tell your friends about Wikiwand!

Gmail Facebook Twitter Link

Enjoying Wikiwand?

Tell your friends and spread the love:
Share on Gmail Share on Facebook Share on Twitter Share on Buffer

Our magic isn't perfect

You can help our automatic cover photo selection by reporting an unsuitable photo.

This photo is visually disturbing This photo is not a good choice

Thank you for helping!


Your input will affect cover photo selection, along with input from other users.