Top Qs
Chronologie
Chat
Contexte

Classification des discontinuités

De Wikipédia, l'encyclopédie libre

Remove ads

En mathématiques, les fonctions continues sont d'une importance primordiale. Cependant, toutes les fonctions ne sont pas continues. On appelle discontinuité tout point du domaine d'une fonction où celle-ci n'est pas continue. L'ensemble des discontinuités d'une fonction peut être discret, dense voire être le domaine entier.

Dans cet article, seules les discontinuités des fonctions réelles à valeurs réelles seront étudiées.

Remove ads

Définitions

Résumé
Contexte

On considère une fonction à valeurs réelles de la variable réelle , définie sur un voisinage du point est discontinue. On a alors trois possibilités :

  • la limite à gauche et la limite à droite en existent et sont finies et égales.Alors, si n'est pas égal à , x0 est appelée discontinuité apparente. La discontinuité peut être effacée dans le sens où la fonctionest continue en x = x0 ;
  • les limites et existent et sont finies, mais ne sont pas égales.Alors x0 est appelée une discontinuité de saut. Dans ce cas, la valeur de ƒ en x0 importe peu ;
  • au moins une des deux limites et n'existe pas ou est infinie.On parle alors de discontinuité essentielle ou discontinuité de deuxième espèce, par opposition aux deux cas précédents, que l'on regroupe sous le nom de discontinuité de première espèce. (Les discontinuités essentielles sont à différencier des singularités essentielles d'une fonction de la variable complexe.)

L'expression « discontinuité apparente » est parfois utilisée au lieu de « singularité apparente », pour un point où la fonction n'est pas définie mais a une limite finie. C'est un abus de langage, puisque la (dis-)continuité n'a de sens qu'en un point du domaine de la fonction.

Remove ads

Exemples

Résumé
Contexte

Les seules discontinuités d'une fonction monotone sur un intervalle réel sont des sauts, d'après le théorème de la limite monotone.

Thumb
La fonction présente une discontinuité apparente en 1.

La fonction

est discontinue en et c'est une discontinuité apparente. En effet, les limites à gauche et à droite en 1 valent toutes les deux 1.

Thumb
La fonction présente une discontinuité de saut en 1.

La fonction

est discontinue en et c'est une discontinuité de saut.

Thumb
La fonction présente une discontinuité essentielle en 1.

La fonction

est discontinue en et c'est une discontinuité essentielle. Il aurait suffi qu'une des deux limites (à gauche ou à droite) n'existe pas ou soit infinie. Toutefois, cet exemple permet de montrer une discontinuité essentielle même pour l'extension au domaine complexe.

Remove ads

Classification par l'oscillation

L'oscillation d'une fonction en un point quantifie une discontinuité de la sorte :

  • pour une discontinuité apparente, la distance entre les limites et la valeur de la fonction au point est son oscillation ;
  • pour un saut, la taille du saut est son oscillation (en supposant que la valeur au point se trouve entre les deux limites) ;
  • dans une discontinuité essentielle, l'oscillation mesure l'incapacité de la limite à exister.

Ensemble des discontinuités d'une fonction

L'ensemble des points où une application de ℝ dans ℝ est continue est toujours un ensemble Gδ[1]. De façon équivalente, l'ensemble de ses discontinuités est un ensemble Fσ. Réciproquement[2], tout Fσ de ℝ est l'ensemble des discontinuités d'une application de ℝ dans ℝ.

Le théorème de Froda dit que l'ensemble des discontinuités de première espèce d'une fonction réelle est au plus dénombrable.

La fonction de Thomae est discontinue en tout rationnel et continue en tout irrationnel.

La fonction indicatrice des rationnels, ou fonction de Dirichlet, est discontinue en tout point.

Remove ads

Notes et références

Voir aussi

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads