Top Qs
Chronologie
Chat
Contexte

Logarithme itéré

Fonction mathématique De Wikipédia, l'encyclopédie libre

Logarithme itéré
Remove ads

En informatique, le logarithme itéré d'un nombre n, noté (lu "log star" ou "log étoile"), est le nombre de fois que le logarithme doit lui être appliqué avant que le résultat soit inférieur ou égal à 1. Cette fonction est utilisée pour décrire la complexité de certains algorithmes, notamment en algorithmique distribuée.

Thumb
La figure présente la courbe du logarithme népérien. On a log 4 = 1.38, puis en reportant la valeur sur l'axe des abscisses par zig zag, on a log 1.38 = 0.32. On a appliqué le logarithme deux fois, donc log* 4 = 2 pour le logarithme itéré en base e.
Remove ads

Définition

Résumé
Contexte

Le logarithme itéré de base b peut être défini par :

Sur les nombres réels positifs, le super-logarithme continu (l'inverse de la tétration) est essentiellement équivalente :

Le tableau suivant donne les valeurs du logarithme itéré (en base 2) :

Davantage d’informations Si ...
Remove ads

Propriétés

Cette fonction croît extrêmement lentement. Une fonction usuelle en informatique théorique qui croît encore plus lentement est la réciproque de la fonction d'Ackermann. Ces deux fonctions sont d'ailleurs liées, puisque le logarithme itéré est l'un des niveaux de la hiérarchie de la réciproque d'Ackermann[1].

Utilisations

Notes et références

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads