Top Qs
Chronologie
Chat
Contexte
Loi de Slash
loi de probabilité (distribution) d'une variable normale divisée par une variable uniforme De Wikipédia, l'encyclopédie libre
Remove ads
En théorie des probabilités, la loi de Slash est la loi de probabilité d'une variable aléatoire de loi normale divisée par une variable aléatoire de loi uniforme continue[1],[2]. En d'autres termes, si est une variable normale centrée réduite (moyenne est nulle et la variance vaut 1), si est uniforme sur et si et sont indépendantes alors la variable suit une loi de Slash. Cette loi a été nommée ainsi par William H. Rogers (en) et John Tukey dans un article publié en 1972[3].
Remove ads
Fonction de densité
Résumé
Contexte
Sa fonction de densité est donnée par
où est la fonction de densité d'une loi normale centrée réduite. Elle n'est pas définie pour , mais cette valeur interdite est remplacée par :
L'utilisation la plus commune de la loi de Slash est dans l'étude de simulations. Cette loi possède une queue plus lourde que la loi normale mais n'est cependant pas pathologique comme la loi de Cauchy[4].
Remove ads
Généralisation
Plus récemment, le terme de loi Slash désigne la loi de toute variable de la forme , où Z et U sont deux variables indépendantes, U suit une loi uniforme sur [0;1] et q > 0. Par extension, U peut aussi être choisi comme une variable suivant une loi bêta ; on parle alors de beta divided slash distribution[5].
Remove ads
Références
Wikiwand - on
Seamless Wikipedia browsing. On steroids.
Remove ads