Top Qs
Chronologie
Chat
Contexte

Méthode des trapèzes

De Wikipédia, l'encyclopédie libre

Méthode des trapèzes
Remove ads

En analyse numérique, la méthode des trapèzes est une méthode pour le calcul numérique d'une intégrale s'appuyant sur l'interpolation linéaire par intervalles.

Thumb
Principe de la méthode : l'aire sous la courbe représentative de f est approchée par l'aire sous une droite affine (en rouge).
Thumb
Animation montrant comment la méthode des trapèzes converge vers la valeur exacte lorsque le nombre d’itérations augmente.
Remove ads

Intervalle unique

Le principe est d'assimiler la région sous la courbe représentative d'une fonction f définie sur un segment [a , b] à un trapèze et d'en calculer l'aire T :

Remove ads

Erreur

Résumé
Contexte

En analyse numérique l'erreur est par convention la différence entre la valeur exacte (limite) et son approximation par un nombre fini d'opérations. (« Il est d'usage d'entendre par erreur d'un nombre approché a la différence entre le nombre exact A correspondant et le nombre approché, Δa=A-a »[1])..

L'erreur d'approximation par un polynôme de Taylor est le reste de la série de Taylor, et l'erreur de quadrature correspond à la différence entre l'aire totale sous la courbe et la somme des aires des trapèzes [2],[3],[4].

En métrologie, l'erreur est définie comme la différence entre valeur approchée et valeur réelle, soit l'opposé de l'erreur définie dans cet article, qui, en métrologie, porte le nom de correction[5].

Pour une fonction à valeurs réelles, deux fois continûment différentiable sur le segment [a , b], l'erreur est de la forme

pour un certain (méthode du premier ordre).

Dans le cas d'une fonction convexe (dérivée seconde positive), l'aire du trapèze est donc une valeur approchée par excès de l'intégrale.

Remove ads

Intervalles multiples

Résumé
Contexte

Pour obtenir de meilleurs résultats, on découpe l'intervalle [a , b] en n intervalles plus petits et on applique la méthode sur chacun d'entre eux. Bien entendu, il suffit d'une seule évaluation de la fonction à chaque nœud :


Le terme Rn(f) est l'erreur de quadrature et vaut : pour un

La méthode des trapèzes revient à estimer l'intégrale d'une fonction comme l'intégrale de son interpolation linéaire par intervalles.

Remove ads

Exemple d'approximation d'une fonction par des trapèzes

Résumé
Contexte

Voici le découpage d'une fonction f que l'on veut intégrer sur l'intervalle [0 ; 2]


Découpage pour différentes valeurs de n (2,8 et 16).
ThumbThumbThumb

Remove ads

Divers théorèmes

Théorème : Si f est 2 fois continûment différentiable sur [a , b], la méthode des trapèzes est convergente sur .
Théorème : La méthode des trapèzes est stable pour les méthodes composites (à intervalles multiples).

Remove ads

Lien avec les autres méthodes d'intégration

La méthode des trapèzes est la première des formules de Newton-Cotes, avec deux nœuds par intervalle. Sa rapidité de mise en œuvre en fait une méthode très employée. Cependant, la méthode de Simpson permet une estimation plus précise d'un ordre pour un coût souvent raisonnable.

Comme tout estimateur basé sur un pas de calcul, la méthode des trapèzes est compatible avec la méthode d'accélération de convergence de Romberg.

Remove ads

Notes et références

Voir aussi

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads