Top Qs
Chronologie
Chat
Contexte

Torseur dynamique

opérateur mathématique utilisé en physique ( notamment en mécanique des systèmes de solides -- MSS ) De Wikipédia, l'encyclopédie libre

Remove ads

Le torseur dynamique est un outil mathématique utilisé en mécanique du solide lors de l'application du principe fondamental de la dynamique.

Définition

Résumé
Contexte

Soit un référentiel R, et un solide S pour lequel on définit le champ de masse volumique ρ. On peut définir en tout point M du solide le vecteur accélération . À partir de ce champ de vecteur, on peut définir le moment dynamique par rapport à un point A donné, noté , par :

Il s'exprime en kg m2 s−2 ou en N m.

On note souvent dm = ρ(M)dV la masse de l'élément de volume infinitésimal dV autour du point M :

On peut définir un moment dynamique par rapport à chaque point A du solide. Le moment dynamique forme ainsi un champ de vecteur. Ce champ est équiprojectif : c'est donc un torseur, appelé torseur dynamique.

On remarque que, comme pour le torseur cinétique, et contrairement au torseur cinématique, il n'est pas nécessaire de supposer que le solide est indéformable.

Remove ads

Résultante

Résumé
Contexte

La résultante du torseur est appelée quantité d'accélération et notée . Elle est définie par (voir démonstration ci-dessus) :

Elle s'exprime en kg m s−2 ou en N. On notera que

où G désigne le centre d'inertie et m la masse totale du solide S.

Remove ads

Éléments de réduction

Résumé
Contexte

Comme tous les torseurs, le torseur dynamique peut être représenté par des éléments de réduction en un point, c'est-à-dire par la donnée du vecteur résultante et d'une valeur du moment dynamique en un point A particulier. On note alors

Remove ads

Rapport avec le torseur cinétique

Résumé
Contexte

Le moment dynamique peut se déduire du moment cinétique par

Remove ads

Cas particuliers

Résumé
Contexte

Dans le cas d'un solide uniquement en translation, on a

Dans le cas d'un solide uniquement en rotation autour de son axe de symétrie,  : le centre de gravité se trouve sur l'axe de rotation et on a

où I est moment d'inertie de S exprimé en kg⋅m2 et est l'accélération angulaire en rad⋅s−2.

Dans le cas où la vitesse de A est nulle ou bien colinéaire à la vitesse du centre d'inertie du solide, le torseur dynamique dérive directement du torseur cinétique, à savoir :

Remove ads

Bibliographie

  • Michel Combarnous, Didier Desjardins et Christophe Bacon, Mécanique des solides et des systèmes de solides, Dunod, coll. « Sciences sup », , 3e éd. (ISBN 978-2-10-048501-7), p. 99-103

Voir aussi

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads