Top Qs
Chronologie
Chat
Contexte

Nombre polygonal centré

nombre figuré De Wikipédia, l'encyclopédie libre

Remove ads

En arithmétique géométrique, un nombre polygonal centré est un type de nombre figuré, qui peut être représenté par un polygone régulier ayant un point en son centre et tous ses autres points disposés autour de ce centre en couches polygonales successives avec un nombre donné de côtés. Les côtés d'une couche polygonale contiennent un point de plus que ceux de la couche polygonale précédente. Ainsi, dans une figure représentant un nombre k-gonal centré, la première couche contient k points et à partir de la deuxième, chaque couche contient k points de plus que la précédente.

Remove ads

Relation de récurrence et formule explicite

Résumé
Contexte

Pour tous entiers k ≥ 3 et n ≥ 1, le n-ième k-gone centré a un point central et n – 1 couches k-gonales régulières.
Pour tout entier n ≥ 2, la dernière couche du n-ième k-gone centré comporte k(n – 1) points ; c'est le gnomon associé au (n – 1)-ième k-gone centré, et faisant passer au n-ième :

Ainsi, le n-ième k-gone centré comporte n points sur chaque rayon et sur chaque côté.

Pour tous entiers k ≥ 3 et n ≥ 1, le n-ième nombre k-gonal centré est donc égal à 1 plus la somme des n premiers termes de la suite arithmétique de premier terme 0 et de raison k, ou encore, 1 plus k fois le (n – 1)-ième nombre triangulaire[1] :

Le fait que est illustré sur la figure ci-dessous dans le cas .

Thumb
Remove ads

Nombre à la fois k-gonal centré et k-gonal

Résumé
Contexte

Pour tout entier k ≥ 3, le premier et le k-ième nombres k-gonaux centrés sont aussi k-gonaux (non centrés):

Exemples :

Remove ads

Nombre polygonal centré premier

Pour tout entier n ≥ 1, le n-ième nombre octogonal centré est le n-ième nombre carré impair. Il ne peut donc pas être premier.

Pour tout entier n ≥ 1, le n-ième nombre ennéagonal centré est le nombre triangulaire d'indice 3n – 2 ≠ 2. Il ne peut donc pas non plus être premier.

Pour tout entier k différent de 8 et de 9 (et ≥ 3), le 2-ième nombre k-gonal centré, Ck, 2 = 1 + k, peut évidemment être premier. En outre, il existe des nombres k-gonaux centrés premiers de rang n ≥ 3 (contrairement aux nombres k-gonaux).

Exemples : en gras dans les listes suivantes.

Listes de nombres polygonaux centrés

Davantage d’informations , ...
Remove ads

Notes et références

Voir aussi

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads