Top Qs
Chronologie
Chat
Contexte
Période radioactive
durée nécessaire pour que la moitié des noyaux d'un isotope radioactif se désintègrent De Wikipédia, l'encyclopédie libre
Remove ads
Remove ads
La période radioactive (période quand le contexte ne prête pas à ambiguïté) ou demi-vie d'un isotope radioactif est la durée nécessaire pour que la moitié des noyaux de cet isotope initialement présents se désintègrent naturellement. Du point de vue d'un atome isolé, la période radioactive est une propriété probabiliste : c'est la durée à l’issue de laquelle le noyau de l'atome a une chance sur deux de s'être désintégré. Cette propriété ne dépend pratiquement pas[a] des conditions environnantes (température, pression, champs, etc.), mais uniquement de l'isotope considéré. Le nombre d’atomes d’un isotope radioactif qui se désintègrent naturellement pendant une certaine durée ne dépend donc que du nombre d’atomes initial. La décroissance de ce nombre d’atomes suit une décroissance exponentielle.

La période se mesure en secondes, l'unité de temps du Système international. Les périodes longues sont fréquemment données en années, il s'agit alors (sauf mention contraire) de l'année julienne (1 a = 365,25 jours = 365,25 × 24 × 3 600 = 31 557 600 s exactement[b]).
Le choix du terme, période ou demi-vie[c], prête à controverse. Pour certains, demi-vie serait plus approprié à la nature du phénomène puisque la radioactivité n'est pas un phénomène périodique. Pour d'autres, période serait plus approprié parce que la décroissance radioactive se répète, identique à elle-même, durant un temps fixé, et que par ailleurs demi-vie peut aussi prêter à confusion (la durée de vie moyenne d'un noyau radioactif n'est pas égale à deux demi-vies[d]).
Dans un contexte médical ou de santé publique, la période radioactive est quelquefois appelée période physique pour la distinguer de la période (ou demi-vie) biologique, qui est le temps au bout duquel la moitié d’une quantité quelconque d’un isotope radioactif a été éliminée de l’organisme, par excrétion aussi bien que par désintégration radioactive.
Remove ads
Ordres de grandeur
Résumé
Contexte
Les demi-vies connues s'étagent de 10−23 s à 1024 ans. Un nucléide n'est considéré comme le noyau d'un atome que si sa demi-vie est assez longue pour qu'un cortège électronique ait le temps de se former (de l'ordre de 10−15 s).
Remove ads
Période de quelques noyaux radioactifs
Résumé
Contexte
La période peut varier considérablement d'un isotope à l'autre, depuis une minuscule fraction de seconde jusqu’à des milliards d'années et même bien davantage. La plus courte demi-vie jamais observée est celle de l'hydrogène 7, (2,3 ± 0,6) × 10−27 s (deux milliardièmes de milliardième de milliardième, ou deux quadrilliardièmes, de seconde), et la plus longue[e] celle du xénon 124, (1,8 ± 0,6) × 1022 a, soit (18 ± 6) trilliards d'années (1 300 milliards de fois l'âge de l'Univers).
La période des radioéléments naturels varie dans de très grandes proportions allant, pour ceux repris dans le tableau ci-dessous, de 3 × 10−7 s (0,3 µs) pour le polonium 212 jusqu'à 1,405 × 1010 ans (14,05 Ga) pour le thorium 232.
L'activité d’un nombre donné d'atomes d'un isotope radioactif, ou activité spécifique, est inversement proportionnelle à sa période radioactive. Plus un corps radioactif a une longue période (ou demi-vie) plus son activité est faible. Par exemple, le plutonium 239 a une longue demi-vie et une faible activité ; le polonium 210 une faible demi-vie et une forte activité.
Dans le tableau ci-dessous Z désigne le numéro atomique (le nombre de protons du noyau) et A le nombre de masse (la somme du nombre de protons et du nombre de neutrons). Le tableau est initialement classé par ordre de période croissante (d’activité spécifique décroissante).
Remove ads
Propriété statistique
Résumé
Contexte
La période radioactive d'un isotope radioactif est la durée au cours de laquelle son activité radioactive décroît de moitié pour un mode de désintégration donné. Le terme « demi-vie », généralement utilisé, laisse croire que l’activité d'un isotope radioactif est nulle au bout d'un temps égal à deux demi-vies. En fait, l'activité n'est alors réduite qu'à seulement 25 % de l’activité initiale (voir le tableau de décroissance de l'activité). En réalité, l'activité A vaut, après demi-vies (que soit entier ou pas), , si bien que l'activité n'est jamais mathématiquement nulle.
C'est une propriété statistique : durée à l'issue de laquelle le noyau d'un atome radioactif aurait une chance sur deux de s'être désintégré suivant le mode de désintégration concerné, si ce mode était seul. Cette propriété à l'échelle du noyau atomique ne dépend pas des conditions d'environnement, telles que température, pression, champs, mais uniquement de l'isotope et du mode de désintégration considérés.
La demi-vie peut varier considérablement d'un isotope à l'autre, depuis une fraction de seconde à des millions, voire des milliards d'années.
L'activité d'un nombre donné d'atomes d'un isotope radioactif, après un temps donné, est proportionnelle à ce nombre et inversement proportionnelle à la demi-vie de l'isotope.
Loi de décroissance radioactive

La décroissance radioactive est un processus de Poisson. La probabilité de désintégration est indépendante du passé et du futur. Pour la dérivation de la loi de probabilité il faut introduire une échelle de temps proportionnelle à la demi-vie. Pour cela on introduit la probabilité cumulative :
- ,
c'est-à-dire la probabilité que la désintégration se produise après un temps t.
Puisque la désintégration est indépendante de l'instant t, U(t) est aussi la probabilité conditionnelle qu'il y ait une désintégration à l'instant t + s sachant qu'il n'y a pas eu de désintégration avant l'instant s, c'est-à-dire : U(t)=U(t + s)/U(s). Ainsi la probabilité cumulative satisfait cette équation :
Dans le cas d'une fonction mesurable l'unique solution est la fonction exponentielle. Soit un ensemble constitué de N éléments dont le nombre décroît avec le temps selon un taux de décroissance noté . L'équation de ce système dynamique (cf. loi de décroissance exponentielle) s'écrit :
où λ est un nombre positif, avec une quantité initiale .
Si on effectue une résolution des équations différentielles à coefficients constants, alors la solution d'une telle équation est la fonction définie par :
Cette fonction décroissante atteint une valeur égale à la moitié de la quantité initiale au bout d'une certaine durée notée . En simplifiant, on obtient alors :
d'où l'on déduit facilement
Cette durée est appelée la demi-vie des éléments de l'ensemble.
Autre formulation simple de l'évolution du nombre de noyaux (N) en fonction du temps :
Remarques
- Il arrive qu'un isotope radioactif comporte plusieurs modes de désintégration, chacun des modes étant caractérisé par une constante radioactive propre λi. La loi de décroissance exponentielle reste valable, et les constantes de désintégration s'ajoutent (λ = λ1 + λ2 + …). La période radioactive reste égale à T = (Log 2)/λ.
- Il arrive aussi qu'un isotope radioactif soit produit en même temps qu'il se désintègre. Le carbone 14 par exemple, radioactif, est produit dans la haute atmosphère par les rayons cosmiques et diffuse vers le sol. C'est aussi le cas des isotopes appartenant à une chaîne de désintégration radioactive (l'isotope radioactif considéré est lui-même le produit de la désintégration de l'isotope en amont dans la chaîne). Dans ces cas, la loi exponentielle simple de décroissance radioactive ne s'applique plus (dans l'expression de dN/dt il y a alors un terme de création en plus du terme de décroissance radioactive).
Remove ads
Sources radioactives usuelles

La plupart des sources radioactives contiennent plusieurs et même parfois un grand nombre d’isotopes radioactifs de périodes diverses. Ce cas est courant, puisqu’il est fréquent qu'un produit de désintégration d’un isotope radioactif soit lui-même radioactif. Dans ce cas, la courbe de décroissance de l’activité est assez éloignée d’une fonction exponentielle décroissante, comme le montre la courbe ci-contre.
La notion de période radioactive n’est donc pas pertinente pour caractériser la décroissance radioactive d'une source usuelle telle que du combustible nucléaire usé ou des déchets radioactifs.
Remove ads
Notes et références
Voir aussi
Wikiwand - on
Seamless Wikipedia browsing. On steroids.
Remove ads