Top Qs
Chronologie
Chat
Contexte

Paul Bachmann

mathématicien allemand De Wikipédia, l'encyclopédie libre

Paul Bachmann
Remove ads

Paul Bachmann () est un mathématicien allemand.

Faits en bref Naissance, Décès ...
Thumb
paul Bachmann vers 1910.

Il fait ses études à Berlin.

Bachmann est à l'origine du symbole grand O (utilisé en informatique plus tard) pour désigner la complexité d'un algorithme. (voir La famille de notations de Landau O, o, Ω, ω, Θ, ~)

À notre époque, les diagrammes de Bachmann servent à représenter les relations dans une base de données relationnelle (ou dans les anciennes bases de données hiérarchiques).

Remove ads

Diagrammes de Bachmann

Résumé
Contexte

C'est une méthode utilisée (en informatique) pour analyser les relations entre des entités (relationnelles et hiérarchiques - par exemple les entités intervenant dans la conception d'une base de données relationnelle)

On distingue la relation entre entité (1 - 1) et la relation hiérarchique (1 à plusieurs) et enfin la relation entre (2 entités) plusieurs à plusieurs (M à N) faisant intervenir plusieurs relations 1 à N. Celle-ci sera représentée en définitive par 3 entités.

Les deux ellipses (représentant les entités à relier entre elles par la relation M à N), se relient au travers de 2 relations 1 à N avec une troisième entité. On note dans chaque ellipse le nom de l'entité.

Pour schématiser dans un diagramme une entité reliée à une autre par la relation 1 à N, on relie les deux entités par un trait.

Sur un des bouts du trait d'une deux entités, on note un demi cercle schématisant "un C comme une fourchette", de sorte que l'entité n'ayant pas à son bout de trait "de fourchette" représente l'entité intervenant à un moment T qu'une seule fois pour chaque instance de l'entité "fourchette". (cf. les cardinalités 1 du côté de l'association dans la méthode d'analyse 'Entité-Associations' Merise)

Ainsi on voit souvent apparaître dans des analyses de diagrammes de Bachmann, des entités cachées qui ne sont pas triviales.

Remove ads

Ouvrages

  • 1894 Analytische Zahlentheorie, théorie analytique des nombres
  • 1872 Die Lehre von der Kreistheilung und ihre Beziehungen zur Zahlentheorie, Teubner, Leipzig, 1872
  • 1902 - 1010 Niedere Zahlentheorie, en deux tomes, sur la théorie des nombres
  • 1919 Das Fermat-Problem in seiner bisherigen Entwicklung, un travail sur le dernier théorème de Fermat.

Bibliographie

Liens externes

Remove ads
Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads