Top Qs
Chronologie
Chat
Contexte
4-polytope régulier convexe
De Wikipédia, l'encyclopédie libre
Remove ads
Un polytope à 4 dimensions (ou polychore) régulier convexe est un objet géométrique, analogue en 4 dimensions des solides de Platon de la géométrie en 3 dimensions et des polygones réguliers de la géométrie en 2 dimensions.

Ces polytopes furent décrits la première fois en parallèle par le mathématicien suisse Ludwig Schläfli et par la mathématicienne autodidacte irlandaise Alicia Boole Stott[1], au milieu du XIXe siècle. Schläfli et Boole Stott découvrirent, sans avoir conscience des travaux de l'autre, qu'il y avait précisément six figures de ce type. Cinq d'entre elles sont considérées comme les analogues de dimension 4 des solides de Platon. Il y a une figure supplémentaire (l'icositétrachore) qui n'a aucun équivalent tri-dimensionnel.
Chaque polytope régulier convexe à 4 dimensions est limité par des cellules tri-dimensionnelles qui sont toutes des solides de Platon du même type et de même taille. Ceux-ci sont organisés ensemble le long de leurs côtés de manière régulière.
Ils sont tous homéomorphes à une hypersphère à la surface tri-dimensionnelle ; leur caractéristique d'Euler-Poincaré vaut donc 0.
Remove ads
Propriétés
Résumé
Contexte
Caractéristiques
Le tableau suivant résume les caractéristiques principales des polychores réguliers :
- Symbole de Schläfli
- Nombre de sommets, d'arêtes, de faces et de cellules
- Figure de sommet
- Polychore dual
- Groupe de Coxeter et ordre du groupe
Dimensions
Le tableau suivant résume certaines propriétés géométriques des polychores réguliers :
- V : hypervolume
- S : hypersurface
- R : rayon de la 3-sphère circonscrite
- r : rayon de la 3-sphère inscrite (r)
- θ : angle dichoral
Dans les formules, φ est le nombre d'or et l'arête est de longueur unité.
Représentations
Le tableau suivant recense quelques projections particulières des polychores.
Remove ads
Liste
Résumé
Contexte
Pentachore

Le pentachore est le simplexe régulier de dimension 4. Son symbole de Schläfli est {3,3,3}.
Ses autres noms sont : 5-cellules, pentatope, hyperpyramide à base tétraédrique, hypertétraèdre, 4-simplexe.
Ses éléments sont :
- 5 sommets
- 10 arêtes
- 10 faces triangulaires
- 5 cellules tétraédriques
Comme tous les simplexes, il est son propre dual. Il fait partie du groupe de symétrie . Sa figure de sommet est un tétraèdre.
Tesseract

C'est un hypercube à 4 dimensions. Son symbole de Schläfli est {4,3,3}.
Ses autres noms sont : l'octachore, le 8-cellules, le 4-cube.
Ses éléments sont :
- 16 sommets
- 32 arêtes
- 24 faces carrées
- 8 cellules cubiques
Son dual est le 16-cellules (un hypercube est en effet toujours dual d'un hyperoctaèdre et vice-versa). Il fait partie du groupe de symétrie . Sa figure de sommet est un tétraèdre.
Hexadécachore

C'est un hyperoctaèdre à 4 dimensions. Son symbole de Schläfli est {3,3,4}.
Ses autres noms sont : le 16-cellules, le 4-orthoplexe, le 4-octaèdre.
Ses éléments sont :
- 8 sommets
- 24 arêtes
- 32 faces triangulaires
- 16 cellules tétraédriques
Il peut être considéré comme une double hyperpyramide à base octaédrique.
Son dual est le tesseract (un hyperoctaèdre est en effet toujours dual d'un hypercube et vice-versa). Il fait partie du groupe de symétrie . Sa figure de sommet est un octaèdre.
Icositétrachore

Il n'a aucun analogue en 3 dimensions. Son symbole de Schläfli est {3,4,3}.
Ses autres noms sont : le 24-cellules, l'octaplexe, le poly-octaèdre.
Ses éléments sont :
- 24 sommets
- 96 arêtes
- 96 faces triangulaires
- 24 cellules octaèdriques
Ayant autant de sommets que de cellules, et autant d'arêtes que de faces, il est son propre dual. Il fait partie du groupe de symétrie . Sa figure de sommet est un cube.
Hécatonicosachore

Il est l'analogue quadri-dimensionnel du dodécaèdre régulier. Son symbole de Schläfli est {5,3,3}.
Ses autres noms sont : l'hécatonicosaédroïde, le 120-cellules, le dodécaplexe, l'hyperdodécaèdre, le polydodécaèdre.
Ses éléments sont :
- 600 sommets
- 1200 arêtes
- 720 faces pentagonales
- 120 cellules dodécaèdriques
Son dual est l'hexachosichore, de la même façon que l'icosaèdre était le dual du dodécaèdre. Son groupe de symétrie est . Sa figure de sommet est un tétraèdre.
Hexacosichore

Il est l'analogue quadri-dimensionnel de l'icosaèdre régulier. Son symbole de Schläfli est {3,3,5}.
Ses autres noms sont : le 600-cellules, le tétraplexe, l'hypericosaèdre, le polytétraèdre.
Ses éléments sont :
- 120 sommets
- 720 arêtes
- 1200 faces triangulaires
- 600 cellules tétraédriques
Son dual est l'hecatonicosachore, de la même façon que le dodécaèdre était le dual de l'icosaèdre. Son groupe de symétrie est . Sa figure de sommet est un icosaèdre.
Remove ads
Références
Voir aussi
Wikiwand - on
Seamless Wikipedia browsing. On steroids.
Remove ads