Top Qs
Chronologie
Chat
Contexte

Théorie de Vapnik-Chervonenkis

théorie de l'apprentissage automatique De Wikipédia, l'encyclopédie libre

Remove ads

La théorie de Vapnik-Tchervonenkis ou Vapnik-Chervonenkis, aussi connue sous le nom de théorie VC, est une théorie mathématique et informatique développée dans les années 1960-1990 par Vladimir Vapnik et Alexey Chervonenkis. C'est une forme de théorie de l'apprentissage automatique, qui tente d'expliquer l'apprentissage d'un point de vue statistique.

Remove ads

Présentation

La théorie VC est liée à la théorie d'étude statistique. On peut désigner quatre notions importantes[réf. souhaitée] :

  • Uniformité des apprentissages, qui correspond à la question : quelles sont les conditions (nécessaires et suffisantes) pour l'uniformité d'un apprentissage basé sur le principe de la minimisation du risque empirique?
  • Taux de convergence des apprentissages, qui correspond à la question : Quelle est la vitesse de la convergence de l'apprentissage ?
  • Contrôle de la capacité d'apprentissage automatique, qui correspond à la question : comment contrôler le taux de convergence (la capacité de généralisation) de l'apprentissage automatique ?
  • Construction des machines à apprentissage automatique, qui correspond à la question : comment créer des algorithmes qui peuvent guider cet apprentissage ?
Remove ads

Concepts importants et relations avec d'autres domaines

La théorie VC contient des concepts importants tels que la dimension VC et la minimisation structurale du risque. Cette théorie est directement liée à certains sujets mathématiques, comme la théorie des espaces de Hilbert à noyau reproduisant, les réseaux de régularisation, les noyaux et les processus empiriques.

Articles connexes

Sources

Remove ads
Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads