Loading AI tools
constante physique fondamentale de l'Univers connu De Wikipédia, l'encyclopédie libre
La vitesse de la lumière dans le vide, habituellement notée c, est une constante physique de l'Univers qui est fondamentale dans plusieurs domaines de la physique.
Unités SI | mètre par seconde (m/s ou m s−1) |
---|---|
Autres unités | CGS : centimètre par seconde (cm/s ou cm s−1) |
Nature | Grandeur scalaire |
Symbole usuel | c |
Valeur | 299 792 458 m/s |
L'étude de la lumière et de sa vitesse remonte à l'Antiquité. Des philosophes et des scientifiques, en s'appuyant sur des arguments théoriques ou des observations, affirment que sa vitesse est infinie, alors que d'autres prétendent que non. Ole Rømer démontre en 1676 qu'elle est finie. Les scientifiques s'attachent ensuite à déterminer sa valeur par divers moyens, la précision s'améliorant au fil des années. Dès la fin du XIXe siècle, il est acquis qu'elle vaut environ 300 000 km/s ; en 1975, le résultat fiable le plus précis est 299 792 458 ± 1 m/s. En 1983, un accord international redéfinit le mètre de telle sorte que la vitesse de la lumière est d'exactement 299 792 458 m/s.
Dans la vie de tous les jours, la lumière (et donc les ondes électromagnétiques) semble se déplacer instantanément, mais sur de longues distances ou dans des instruments de mesure très précis, des effets permettent de déduire que sa vitesse est finie. Dans les matériaux transparents et les conducteurs électriques, les ondes électromagnétiques se déplacent plus lentement que c. Les vitesses de certains phénomènes ondulatoires et de certains objets célestes peuvent être plus grandes que c. La vitesse d'expansion de l'Univers excède c hors de certaines limites géométriques.
Bien que cette vitesse soit le plus souvent associée à la lumière, c'est aussi celle de toute particule sans masse et de toute perturbation dans un champ situé dans le vide, incluant les ondes gravitationnelles et les ondes électromagnétiques (dont la lumière visible ne constitue qu'une minuscule partie). Les particules dotées d'une masse au repos peuvent approcher de c, mais ne peuvent l'atteindre, peu importe le référentiel inertiel dans lequel leur vitesse est mesurée.
Dans les référentiels non inertiels (des espaces-temps courbés par la gravité ou des référentiels accélérés), la vitesse de la lumière locale (à proximité immédiate des événements) reste constante et égale c, mais elle peut être différente sur une trajectoire de longueur finie selon la façon dont sont définis les distances et les temps.
Au XXIe siècle, la vitesse de la lumière dans le vide est dénotée par la lettre minuscule c, initiale du mot latin celeritas (signifiant « rapidité, célérité ») ou encore de « célérité » en français, mais son symbole a varié dans le temps. En 1856, Wilhelm Eduard Weber et Rudolf Kohlrausch utilisent c pour une constante différente qui a été plus tard démontrée égale à √2 × c. En 1865, le symbole V est introduit par James Clerk Maxwell comme alternative pour indiquer la vitesse de la lumière dans le vide. En 1894, Paul Drude préfère c, tout en lui donnant sa définition moderne. Pourtant, Albert Einstein utilise V dans ses articles sur la relativité restreinte de 1905 ; c'est en 1907 qu'il commence à utiliser c, devenu entretemps le symbole courant pour la vitesse de la lumière dans le vide[1],[2],[3].
Parfois, c est utilisée pour indiquer la vitesse d'une onde lumineuse dans n'importe quel médium physique et c0 pour la vitesse de la lumière dans le vide[4]. Cette notation indicée, présente dans la littérature du SI[5], a la même forme que plusieurs constantes de l'électromagnétisme : μ0 pour la perméabilité du vide (ou constante magnétique), ε0 pour la permittivité du vide (ou constante électrique) et Z0 pour l'impédance caractéristique du vide. Dans la suite de cet article, seul c est utilisé pour désigner la vitesse de la lumière dans le vide.
Avant l'époque moderne (grossièrement, de 1500 à 1800), des scientifiques et des philosophes proposent soit que la lumière se déplace instantanément soit à une vitesse finie très grande. Le premier enregistrement connu d'un effort dans ce sens remonte à la Grèce antique. Les Grecs anciens, les érudits musulmans puis les scientifiques européens de l'époque moderne ont longuement débattu sur ce sujet, jusqu'à ce que Ole Rømer fournisse la première preuve que la vitesse de la lumière est finie. La relativité restreinte d'Einstein, proposée en 1905 et vérifiée expérimentalement par la suite, permet de conclure que c est constante, peu importe le référentiel où elle est mesurée. Au XXe siècle, des scientifiques ont continué à affiner la valeur de c.
<1638 | Galilée, lanternes masquées | pas concluant[6],[7],[8],[note 1] | |
<1667 | Accademia del Cimento, lanternes masquées | pas concluant[9],[10] | |
1675 | Rømer et Huygens, lune Io de Jupiter | 220 000[11],[12] | erreur de ‒27 % |
1729 | James Bradley, aberration de la lumière | 301 000[13] | erreur de +0,40 % |
1849 | Hippolyte Fizeau, roue dentelée en rotation | 315 000[13] | erreur de +5,1 % |
1862 | Léon Foucault, miroirs rotatifs | 298 000 ± 500[13] | erreur de ‒0,60 % |
1907 | Rosa et Dorsey, constantes électromagnétiques et | 299 710 ± 30[14],[15] | erreur de ‒280 ppm |
1926 | Albert Michelson, miroir rotatif | 299 796 ± 4[16] | erreur de +12 ppm |
1950 | Essen et Gordon-Smith, cavité résonnante | 299 792,5 ± 3,0[17] | erreur de +0,14 ppm |
1958 | K. D. Froome, interférométrie radio | 299 792,50 ± 0,10[18] | erreur de +0,14 ppm |
1972 | Evenson et al., interférométrie laser | 299 792,456 2 ± 0,001 1[19] | erreur de ‒0,006 ppm |
1983 | 17e congrès de la CGPM, définition du mètre | 299 792,458[20] | exact, par définition |
Empédocle (c. 490-430 av. J.-C.) est le premier à proposer une théorie de la lumière[21] et déclare que la lumière a une vitesse finie[22]. Il affirme que la lumière est quelque chose en mouvement, et doit donc prendre du temps pour voyager. Aristote, au contraire, argue que « la lumière est due à la présence de quelque chose, mais ce n'est pas un mouvement »[trad 1],[23]. Euclide et Ptolémée reprennent la théorie de l'émission d'Empédocle, où la lumière provient de l'œil, ce qui permet de voir. En se basant sur cette théorie, Héron d'Alexandrie affirme que la vitesse de la lumière doit être infinie puisque l'on voit des objets distants, telles les étoiles, dès que l'on ouvre les yeux[24].
Les premiers philosophes islamiques acceptent dans un premier temps la vision aristotélicienne selon laquelle la lumière ne voyage pas. En 1021, Alhazen publie son Traité d'optique, où il présente un ensemble d'arguments contre la théorie de l'émission et en faveur de la théorie de l'intromission, c'est-à-dire que la lumière d'un objet entre dans l’œil[25]. Sa réflexion l'amène à proposer que la lumière doit voyager à une vitesse finie[23],[26],[27] et que cette vitesse peut changer selon le corps dans lequel elle se propage, étant plus lente dans les corps plus denses[27],[28]. Il soutient que la lumière est une matière faite d'une substance solide, sa propagation exige donc du temps, même si nos sens ne peuvent le percevoir[29]. Également au XIe siècle, Al-Biruni soutient que la vitesse de la lumière est finie et mentionne qu'elle est nettement plus grande que celle du son[30].
Au XIIIe siècle, Roger Bacon argue que la vitesse de la lumière dans l'air n'est pas infinie, recourant à des arguments philosophiques qui s'appuient sur les travaux d'Alhazen et d'Aristote[31],[32]. Dans les années 1270, Vitellion étudie la possibilité que la lumière voyage à une vitesse infinie dans le vide, mais ralentit dans les corps plus denses[33].
Au début du XVIIe siècle, Johannes Kepler pense que la vitesse de la lumière est infinie puisque l'espace vide ne présente aucun obstacle à sa propagation. René Descartes argue que si la vitesse de la lumière est finie, le Soleil, la Terre et la Lune ne seraient pas parfaitement alignés lors d'une éclipse lunaire. Puisqu'un tel manque d'alignement n'a pas été observé, Descartes conclut que la vitesse de la lumière est infinie. Il spécule que si la vitesse de la lumière était finie, tout son système philosophique pourrait être réfuté[23]. Lorsqu'il dérive les lois de Snell-Descartes, il accepte la contradiction que la lumière se déplace instantanément, alors que son système philosophique affirme que plus dense est le médium, plus rapide est la lumière[34]. Pierre de Fermat, qui soutient que la vitesse de la lumière est finie, dérive les mêmes lois en utilisant l'argument opposé que la lumière voyage moins vite dans les médiums plus denses[35].
En 1629, Isaac Beeckman propose une expérience où une personne observe l'éclair d'un coup de canon réfléchi sur un miroir à une distance d'environ 1 mile (1,6 km)[7]. En 1638, Galilée propose une autre expérience, qu'il aurait réalisée quelques années plus tôt, pour mesurer c en observant le délai entre l'exposition du hublot d'une lanterne allumée et de la détection de la lumière projetée à quelque distance de là. Il aurait été incapable de déterminer si c est infinie ou pas. Il conclut que si elle n'est pas infinie, elle doit être très grande[6],[7]. En 1667, l’Accademia del Cimento de Florence rapporte avoir effectué l'expérience de Galilée, avec des lanternes distantes d'environ 1 mile. Aucun délai n'est observé[9],[10],[note 2].
Ole Rømer est, en 1676, le premier à tenter de mesurer c. Connaissant la période orbitale de la lune Io de Jupiter, il détermine qu'elle raccourcit lorsque la Terre approche de Jupiter et qu'elle allonge lorsque la Terre s'éloigne de Jupiter. Il conclut que la lumière voyage à une vitesse finie ; il estime qu'elle prend 22 minutes à franchir le diamètre de l'orbite terrestre[36],[11]. Pour sa part, Christian Huygens combine cette durée avec une estimation du diamètre de l'orbite terrestre et calcule que c égale 220 000 km/s[12],[note 3].
Dans son livre Opticks de 1704, Isaac Newton rapporte les calculs de Rømer et affirme que la lumière franchit la distance séparant le Soleil de la Terre en « sept ou huit minutes »[trad 2],[37],[note 4]. En 1729, James Bradley découvre l'aberration stellaire[38]. En s'appuyant sur cet effet, il détermine que c égale 10 210 fois la vitesse orbitale de la Terre[note 5] ou, de façon équivalente, qu'il faut à la lumière 8 min 12 s pour franchir la distance Soleil-Terre[38].
Au XIXe siècle, Hippolyte Fizeau développe une méthode pour déterminer c en effectuant des mesures terrestres du temps de vol de la lumière ; il rapporte la valeur de 315 000 km/s[39]. En 1856, Wilhelm Eduard Weber et Rudolf Kohlrausch, grâce aux décharges électriques d'une bouteille de Leyde, mesurent une unité de charge électromagnétique et une unité de charge électrostatique ; ils calculent le rapport des deux unités et obtiennent une vitesse proche de la valeur obtenue par Fizeau. L'année suivante, Gustav Kirchhoff calcule qu'un signal électrique voyage dans un fil sans résistance à cette même vitesse[40]. Au début des années 1860, James Clerk Maxwell démontre, dans le cadre de sa théorie de l'électromagnétisme, que les ondes électromagnétiques se propagent dans le vide[41],[42],[43] à une vitesse égale à celle calculée par Weber et Kohlrausch, tout en attirant l'attention sur la proximité numérique avec la vitesse de la lumière mesurée par Fizeau[44]. Pour lui, la lumière est une onde électromagnétique[45]. Améliorant la méthode de Fizeau, Léon Foucault obtient 298 000 km/s en 1862[13].
Aux XIXe siècle, les scientifiques pensent qu'un médium est nécessaire pour qu'un phénomène ondulatoire puisse se produire, peu importe que ce soit une vague ou une onde sonore par exemple. Puisque la lumière se propage dans le vide, il doit être rempli d'un médium qui sert à la propagation des ondes lumineuses. La Terre, qui se déplace dans ce médium immobile appelé « éther luminifère », est soumise à l'équivalent d'un vent[note 6],[46].
Reprenant cette hypothèse, des scientifiques du XIXe siècle pensent qu'il est possible de mesurer la vitesse de la Terre en détectant un changement dans la vitesse de la lumière. En effet, si la Terre s'éloigne ou se rapproche du Soleil par exemple, la vitesse de la lumière issue du Soleil change selon la loi de composition des vitesses[46].
Au début des années 1880, plusieurs expériences sont menées pour calculer la vitesse de la Terre[47]. La plus connue est l'expérience de Michelson–Morley de 1887[48]. Pendant cette expérience, la vitesse détectée est toujours plus petite que l'erreur d'observation[49],[50]. Des expériences menées au XXe siècle démontrent que l'erreur est inférieure à 6 nanomètres par seconde ; il faut donc conclure que la lumière se déplace à la même vitesse, peu importe la direction de propagation (elle est donc isotrope)[51]. À la suite de cette expérience, George FitzGerald et Hendrik Lorentz proposent de façon indépendante que les appareils utilisés se contractent dans le sens du mouvement, ce qui annulerait l'effet du vent d'éther. Lorentz indique de plus que le temps d'un système en mouvement, qu'il appelle « temps local », doit aussi être modifié par le même facteur, ce qui mène à la formulation des transformations de Lorentz. En se basant sur la théorie de l'éther de Lorentz, Henri Poincaré démontre en 1900 que ce temps local (une approximation d'ordre 2 du rapport v/c) est celui indiqué par les horloges qui se déplacent dans l'éther, qui sont synchronisées en faisant l'hypothèse que c est constante. En 1904, il spécule que c pourrait être l'ultime vitesse en dynamique, à la condition que toutes les hypothèses de la théorie de Lorentz soient validées. En 1905, il démontre, en se basant sur différentes expériences, que la théorie de l'éther de Lorentz explique complètement le principe de relativité[52],[53].
En 1905, le physicien Albert Einstein postule que la vitesse de la lumière dans le vide, telle que mesurée par des observateurs non accélérés, est indépendante du mouvement de la source et du mouvement des observateurs. En se basant à la fois sur cette invariance et le principe de relativité, il jette les bases de la relativité restreinte, où c est élevée au rang de constante fondamentale de l'Univers, constante qui apparaît dans des contextes où la lumière ne joue aucun rôle direct. Sa théorie rend caduque la notion d'éther luminifère (hypothèse que soutiennent encore Lorentz et Poincaré) et met en avant ce qui sera appelé l'« espace-temps », une façon de représenter l'espace et le temps comme deux notions inséparables[54],[55],[56].
Dans la seconde moitié du XXe siècle, des progrès techniques permettent de préciser encore plus la valeur de la vitesse de la lumière. En 1950, Louis Essen détermine que c égale 299 792,5 ± 3,0 km/s en utilisant une cavité résonnante[17]. Cette valeur est adoptée par la 12e assemblée de l'Union radio-scientifique internationale en 1957. En 1960, le mètre est redéfini en fonction de la longueur d'onde d'une ligne spectrale particulière du krypton 86. En 1967, c'est au tour de la seconde d'être redéfinie selon la fréquence de transition hyperfine de l'état fondamental du césium 133[57].
En 1972, en utilisant des techniques d'interférométrie par laser et les nouvelles définitions, un groupe du National Bureau of Standards détermine que la vitesse de la lumière dans le vide est de 299 792 456,2 ± 1,1 m/s. Cette mesure est 100 fois plus précise que la plus précise des mesures précédentes. L'incertitude est surtout attribuable à la définition du mètre[note 7],[19]. D'autres expériences ayant déterminé la même valeur de c, la 15e Conférence générale des poids et mesures (CPGM), tenue en 1975, recommande d'utiliser la valeur de 299 792 458 m/s pour la vitesse de la lumière[60].
En 1983, le 17e congrès de la Conférence générale des poids et mesures (CGPM) conclut que, comparativement aux méthodes reconnues par les standards en vigueur, il est plus facile de reproduire certaines longueurs d'onde à partir de mesures de fréquences et d'une valeur connue de c. Le congrès retient la définition de 1967 pour la seconde, ce qui fait de la fréquence hyperfine du césium la base servant à définir la seconde et le mètre. Le congrès déclare que « le mètre est la longueur du trajet parcouru par la lumière dans le vide pendant l'intervalle temporel de 1299 792 458 seconde »[trad 4],[20].
En conséquence, la valeur de c est définie exactement égale à 299 792 458 m/s[61],[62],[63] et devient ainsi une constante définie dans le Système international d'unités (SI)[64].
La décision du congrès impose que la valeur du mètre dépende dorénavant de mesures plus précises de fréquences ou de longueurs d'onde de la lumière, par exemple en mesurant plus précisément la longueur d'onde de la transition hyperfine du krypton 86 ou de toute autre source d'ondes électromagnétiques[65],[66].
En 2011, la CGPM déclare son intention de redéfinir les sept unités de base du SI en utilisant ce qu'elle appelle « la formulation des constantes explicites »[trad 5], où chaque « unité est définie indirectement en spécifiant explicitement une valeur exacte pour une constante fondamentale bien connue »[trad 6], comme il a été fait pour c[67]. Une nouvelle définition du mètre, complètement équivalente, est proposée : « Le mètre, symbole m, est l’unité de longueur du SI. Il est défini en prenant la valeur numérique fixée de la vitesse de la lumière dans le vide, c, égale à 299 792 458 lorsqu’elle est exprimée en m/s, la seconde étant définie en fonction de ∆νCs. »[note 8]. Cette définition est inscrite dans le « SI révisé »[69].
La vitesse à laquelle se déplace la lumière dans le vide est à la fois indépendante de la vitesse de la source et du référentiel inertiel de l'observateur[70],[71],[note 9]. Cette invariance a été postulée par Albert Einstein en 1905[72], après une étude de la théorie de l'électromagnétisme de James Clerk Maxwell et du manque de preuve de l'existence de l'éther luminifère[73]. Son hypothèse a été confirmée à maintes reprises par la suite[74],[note 10]. Il est seulement possible de vérifier expérimentalement que la vitesse d'un rayon de lumière effectuant un aller-retour (par exemple, d'une source à un miroir, et vice-versa) ne dépend pas du référentiel inertiel, parce qu'il est impossible de mesurer la vitesse de la lumière dans un seul sens (d'une source à un très lointain détecteur par exemple) sans avoir établi au préalable une convention pour synchroniser les horloges à la source et au détecteur. Toutefois, en adoptant la synchronisation d'Einstein, c dans un sens et c dans un aller-retour sont identiques par définition[75],[76].
La relativité restreinte, fondée par Albert Einstein en 1905, explore plusieurs conséquences de l'invariance de c. Par exemple, c est la vitesse à laquelle toutes les particules sans masse et toutes les ondes électromagnétiques se propagent dans le vide[71],[70]. Cette théorie prédit des phénomènes contre-intuitifs, qui ont été vérifiés expérimentalement[77]. Parmi ceux-ci, il y a l'équivalence masse-énergie (exprimée par )[78], la contraction des longueurs[79] (les objets en mouvement sont plus courts dans le sens du mouvement)[note 11] et la dilatation du temps[82] (les horloges en mouvement avancent plus lentement). Le facteur de Lorentz, noté γ, permet de calculer la contraction de la longueur et la dilatation du temps d'un objet en mouvement[83] ; il est donné par la formule γ = , où v est la vitesse de l'objet et c, la vitesse de la lumière[84]. La valeur de γ est très proche de 1 aux vitesses beaucoup plus faibles que c, ce qui est le cas pour la plupart des vitesses observées dans la vie courante[84] — dans ces cas, les valeurs calculées par la relativité restreinte sont très proches de celles calculées par la relativité galiléenne. Il augmente sensiblement aux vitesses dites relativistes (donc, proches de c) et tend vers l'infini positif lorsque v est très proche de c[85]. Par exemple, le taux de contraction γ d'un objet en mouvement égale 2 lorsque sa vitesse relative atteint 86,6 % de c. Par ailleurs, un taux de dilation du temps γ = 10 apparaît lorsque v = 99,5 % c[note 12].
Les résultats de la relativité restreinte peuvent être résumés en regroupant l'espace et le temps dans une seule structure appelée « espace-temps », tout en exigeant que soit satisfaite l'invariance de Lorentz, dont la formulation mathématique comprend c[86] (elle permet de relier l'espace au temps puisque c comprend à la fois les unités de mesure de l'espace et du temps). L'invariance de Lorentz, une symétrie, est une hypothèse de base régulièrement mentionnée dans les théories physiques fondamentales modernes, telles l'électrodynamique quantique, la chromodynamique quantique, le modèle standard de la physique des particules et la relativité générale. En conséquence, c apparaît en beaucoup d'endroits en physique. Par exemple, la relativité générale prédit que c est aussi la vitesse de la gravité et des ondes gravitationnelles[87],[note 13]. Dans les référentiels non inertiels (des espaces-temps courbés par la gravité ou des référentiels accélérés), la vitesse de la lumière locale est constante et égale c. Elle peut être différente sur une trajectoire de longueur finie selon la façon dont sont définis les distances et les temps[89].
La plupart des scientifiques pensent que les constantes fondamentales, telle que c, sont identiques peu importe l'espace-temps choisi. Elles seraient donc indépendantes du lieu et du temps où elles seraient calculées ou observées. Néanmoins, des scientifiques ont produit des théories où c serait différente selon l'époque cosmologique[90],[91]. Aucune preuve concluante qui permettrait de valider ces théories n'a été trouvée jusqu'en 2013, et la recherche se poursuit[92],[93].
Également, c est régulièrement jugée isotrope, c'est-à-dire qu'elle a la même valeur peu importe sa direction de propagation. Les observations d'ondes émises (1) par des noyaux atomiques plongés dans un champ magnétique variable[94] et (2) par des résonateurs optiques en rotation, imposent des limites strictes et très faibles sur l'imprécision d'une anisotropie en fonction de l'angle d'observation[95],[96].
Selon la relativité restreinte, l'énergie d'un objet ayant une masse au repos m et une vitesse v est donnée par γmc2, où γ est le facteur de Lorentz (qui comprend le terme v). Quand v est nulle, γ égale un, ce qui mène à la « fameuse équation »[97] (équivalence masse-énergie). γ tend vers l'infini positif lorsque v approche de c et il faudrait une énergie encore plus grande (jusqu'à une valeur infinie) pour accélérer encore plus un objet pesant pour lui faire atteindre c. La vitesse de la lumière dans le vide est donc l'ultime limite de vitesse pour les objets en mouvement dotés d'une masse au repos positive. Les photons individuels ne peuvent voyager plus vite que cette vitesse[98],[99],[100]. Ces hypothèses ont été confirmées expérimentalement[101].
Plus généralement, il est impossible aux signaux ou à l'énergie de voyager plus vite que c. Un argument en faveur de cette position provient de la relativité de la simultanéité, l'une des conséquences de la relativité restreinte. Si la distance spatiale des évènements A et B est plus grande que l'intervalle de temps entre les deux multiplié par c, alors il existe des référentiels où A précède B, d'autres où B précède A et d'autres où les deux sont simultanés. En conséquence, si quelque chose voyageait plus vite que c relativement à un référentiel inertiel, il reculerait dans le temps relativement à un autre référentiel et la causalité serait violée[note 14],[103].
Dit autrement, un effet serait observé avant sa cause. Ce phénomène, qui n'a jamais été observé[76], mènerait par exemple à l'existence d'un antitéléphone tachyonique, c'est-à-dire un hypothétique appareil qui pourrait être utilisé pour envoyer un signal dans son passé[104]. Albert Einstein en 1907[105],[106] présente une expérience de pensée où des signaux supraluminiques pourraient provoquer un paradoxe de causalité. En 1910, Arnold Sommerfeld et Einstein le décrivent comme un moyen de « télégraphier dans le passé »[trad 7],[107]. La même expérience de pensée a été décrite par Richard Tolman en 1917[108] ; des scientifiques peuvent faire allusion à cet appareil en mentionnant le « paradoxe de Tolman ». Plus tard, il a été nommé « antitéléphone tachyonique »[trad 8] par Gregory Benford et al[109].
Dans les domaines de la physique où c apparaît régulièrement, comme la relativité restreinte et la relativité générale, il est courant d'utiliser des systèmes d'unités naturelles de mesures ou des systèmes d'unités géométriques dans lesquelles c = 1[110],[111],[note 15].
Certaines observations laissent penser, à tort, que la matière, l'énergie ou des signaux transportant des informations se déplacent à une vitesse supérieure à c. Par exemple, tel que discuté dans la section Dans un médium ci-dessous, les vitesses de plusieurs caractéristiques d'ondes peuvent excéder c. Par exemple, les vitesses de phase des rayons X, lorsqu'ils traversent la plupart des verres, dépassent régulièrement c[112], mais aucune vitesse de phase n'influe sur la vitesse à laquelle les ondes transportent des informations[113].