Cramer sin reegel as en metood, am linear liknangsüsteemen tu liasin. Hat as näämd efter Gabriel Cramer. Tekst üüb Öömrang Bispal (1) Det liknangsüsteem uun normoolfurem 1 x 1 + 2 x 2 = 3 4 x 1 + 5 x 2 = 6 {\displaystyle {\begin{matrix}\color {blue}{1}\,\color {black}x_{1}+\color {blue}{2}\,\color {black}x_{2}=\color {green}{3}\\\color {blue}{4}\,\color {black}x_{1}+\color {blue}{5}\,\color {black}x_{2}=\color {green}{6}\end{matrix}}} (2) Det ütjwidjet koefisientenmaatriks ( A b ) = ( 1 2 3 4 5 6 ) {\displaystyle {\begin{pmatrix}\color {blue}{A}&\color {green}b\end{pmatrix}}=\left({\begin{array}{cc|c}\color {blue}{1}&\color {blue}{2}&\color {green}{3}\\\color {blue}{4}&\color {blue}{5}&\color {green}{6}\end{array}}\right)} (3) Liasang efter Cramer sin reegel (det=determinant) x 1 = det ( A 1 ) det ( A ) = det ( 3 2 6 5 ) det ( 1 2 4 5 ) = 3 ⋅ 5 − 6 ⋅ 2 1 ⋅ 5 − 4 ⋅ 2 = 3 − 3 = − 1 {\displaystyle x_{1}={\frac {\det(A_{1})}{\det(A)}}={\frac {\det {\begin{pmatrix}\color {green}{3}&\color {blue}{2}\\\color {green}{6}&\color {blue}{5}\end{pmatrix}}}{\det {\begin{pmatrix}\color {blue}{1}&\color {blue}{2}\\\color {blue}{4}&\color {blue}{5}\end{pmatrix}}}}={\frac {3\cdot 5-6\cdot 2}{1\cdot 5-4\cdot 2}}={\frac {3}{-3}}=-1\qquad } x 2 = det ( A 2 ) det ( A ) = det ( 1 3 4 6 ) det ( 1 2 4 5 ) = 1 ⋅ 6 − 4 ⋅ 3 1 ⋅ 5 − 4 ⋅ 2 = − 6 − 3 = 2 {\displaystyle x_{2}={\frac {\det(A_{2})}{\det(A)}}={\frac {\det {\begin{pmatrix}\color {blue}{1}&\color {green}{3}\\\color {blue}{4}&\color {green}{6}\end{pmatrix}}}{\det {\begin{pmatrix}\color {blue}{1}&\color {blue}{2}\\\color {blue}{4}&\color {blue}{5}\end{pmatrix}}}}={\frac {1\cdot 6-4\cdot 3}{1\cdot 5-4\cdot 2}}={\frac {-6}{-3}}=2} Remove adsLuke uk diar Lineaar algebra Loading related searches...Wikiwand - on Seamless Wikipedia browsing. On steroids.Remove ads