For faster navigation, this Iframe is preloading the Wikiwand page for מודל הייזנברג (קוונטי).

מודל הייזנברג (קוונטי)

מודל הייזנברג הקוונטי הוא מודל מתמטי במכניקה סטטיסטית המשמש למחקר של נקודות קריטיות ומעברי פאזה במערכות מגנטיות, כאשר הספינים של מערכות אלו מיוצגים קוונטית.

תיאור המודל

בדומה ל-מודל איזינג, גם במודל זה, עבור סריג בעל d ממדים, בכל נקודת סריג מצוי מומנט מגנטי, או 'ספין' S, אשר ערכו הוא בינארי (לרוב מיוצג בתור 1 + ו 1-), כאשר בייצוג מרחבי הספין מתואר כחץ שמצביע "מעלה" או "מטה". הספינים מקובעים לנקודות הסריג ואינם יכולים לנוע, אך יכולים לשנות את ערכם מערך בינארי אחד לשני, בהתאם לאינטראקציה ביניהם.

מסיבות קוונטיות (ראה אינטראקציית שחלוף) הצימוד בין 2 מומנטים מגנטיים כאשר הם מיושרים לאותו כיוון, גורם למערכת להימצא ברמת אנרגיה נמוכה מינימלית. תחת הנחה זו (כך שאינטראקציות מגנטיות אלו קורות רק בין מומנטים מגנטיים צמודים) ההמילטוניאן של המערכת מוגדר כך:

כאשר הוא קבוע הצימוד עבור מודל חד ממדי המכיל מומנטים מגנטיים, אשר מיוצגים על ידי ווקטורים קלאסיים (או ספינים) σj בכפוף לתנאי שפה מחזורי .

מודל הייזנברג הוא מודל יותר מציאותי יחסית למודלים אחרים בכך שהוא מתייחס לספינים קוונטית, על ידי החלפת אופרטור הספין הקלאסי באופרטור קוונטי (מטריצות פאולי של ספין 1/2), ובהחלפת קבוע הצימוד החד ממדי בקבועי הצימוד ו- עבור 3 ממדים. לאחר ביצוע החלפות אלו ההמילטוניאן (1) מוגדר כך:

כאשר מייצג שדה מגנטי חיצוני עם תנאי שפה מחזוריים ב-ספין ואילו , , מייצגות את מטריצות הספין המוגדרות על ידי מטריצות פאולי:







פתרון המודל

ההמילטוניאן פועל על מכפלה טנזורית של ממד . המטרה היא להעריך את ספקטרום האנרגיה שעבורו התרמודינמיקה של המערכת ניתנת לניתוח ו-פונקציית החלוקה ניתנת לחישוב. תת-המודל הידוע ביותר של מודל הייזנברג הוא מודל הייזנברג XXZ, עבור המקרה שבו . מודל הייזנברג של ספין בממד אחד ניתן לפתרון מדויק על ידי שיטת אנסאץ (ניחוש מושכל).

השלכות המודל

הפיזיקה של מודל הייזנברג תלויה באופן מובהק בסימן של קבוע הצימוד ובממד של המרחב:




  • עבור (ספין שלם) - קיים רק סדר קצר טווח.


  • עבור (ספין חצי - שלם) - קיים גם סדר ארוך טווח.

השלכה נוספת של המודל נוגעת לאנטרופיה של שזירה קוונטית. הדרך לתאר זאת היא לחלק את רמת האנרגיה הבסיסית לבלוק (הכולל מספר ספינים עוקבים) וסביבה (שאר רמת האנרגיה הבסיסית). האנטרופיה של הבלוק יכולה להיחשב כאנטרופיה של שזירה קוונטית. בטמפרטורה אפס באזור הקריטי (בגבול התרמודינמי) האנטרופיה עולה לוגריתמית בהתאם לגודל הבלוק. כאשר הטמפרטורה עולה, התלות הלוגריתמית משתנה לתלות ליניארית[1]. עבור טמפרטורה גבוהה, התלות הליניארית נובעת מהחוק השני של התרמודינמיקה.

ראו גם

קישורים חיצוניים

  • R.J. Baxter, Exactly solved models in statistical mechanics, London, Academic Press, 1982
  • H. Bethe, Zur Theorie der Metalle, Zeitschrift für Physik A, 1931 doi:10.1007/BF01341708

הערות שוליים

  1. ^ Universality of Entropy Scaling in 1D Gap-less Models (עמ' 4), ‏2 בפברואר 2008 (באנגלית)
{{bottomLinkPreText}} {{bottomLinkText}}
מודל הייזנברג (קוונטי)
Listen to this article

This browser is not supported by Wikiwand :(
Wikiwand requires a browser with modern capabilities in order to provide you with the best reading experience.
Please download and use one of the following browsers:

This article was just edited, click to reload
This article has been deleted on Wikipedia (Why?)

Back to homepage

Please click Add in the dialog above
Please click Allow in the top-left corner,
then click Install Now in the dialog
Please click Open in the download dialog,
then click Install
Please click the "Downloads" icon in the Safari toolbar, open the first download in the list,
then click Install
{{::$root.activation.text}}

Install Wikiwand

Install on Chrome Install on Firefox
Don't forget to rate us

Tell your friends about Wikiwand!

Gmail Facebook Twitter Link

Enjoying Wikiwand?

Tell your friends and spread the love:
Share on Gmail Share on Facebook Share on Twitter Share on Buffer

Our magic isn't perfect

You can help our automatic cover photo selection by reporting an unsuitable photo.

This photo is visually disturbing This photo is not a good choice

Thank you for helping!


Your input will affect cover photo selection, along with input from other users.