For faster navigation, this Iframe is preloading the Wikiwand page for מרחב נורמלי.

מרחב נורמלי

בטופולוגיה, נורמליות ותכונת הן דוגמאות לסוג חזק יחסית של תכונות הפרדה. מרחב נורמלי הוא מרחב טופולוגי המפריד בין קבוצות סגורות זרות, באמצעות סביבות פתוחות. מרחב נורמלי שבו כל נקודה מהווה קבוצה סגורה, נקרא מרחב .

מרחב טופולוגי הוא נורמלי, אם לכל שתי קבוצות סגורות וזרות A ו- B, קיימות קבוצות פתוחות וזרות המכילות אחת את A ואחת את B. תכונה זו נקראת 'הפרדה בין קבוצות סגורות בקבוצות פתוחות'. ניסוח שקול: לכל קבוצה סגורה F וקבוצה פתוחה G כך ש , קיימת קבוצה פתוחה V שעבורה .

אם מתקיים גם אז כל מרחב הוא מרחב T3, שבו אפשר להפריד באמצעות קבוצות פתוחות בין קבוצה סגורה לנקודה, ולכן גם מרחב האוסדורף, שבו אפשר להפריד בין נקודות.

הלמה של אוריסון קובעת שבמרחב נורמלי אפשר להפריד בין קבוצות סגורות וזרות באמצעות פונקציה רציפה, כלומר: לכל A ו- B סגורות וזרות, קיימת פונקציה רציפה מן המרחב לקטע היחידה [0,1], כך ש- ו- . מכאן נובע שמרחב הוא מרחב טיכונוף (הקרוי גם מרחב ), ובפרט מרחב רגולרי לחלוטין.

את הלמה של אוריסון ניתן לראות כאילו היא מאפשרת להרחיב את הפונקציה המקבלת את הערך 0 בקבוצה A ואת הערך 1 בקבוצה B, לפונקציה רציפה המוגדרת על כל המרחב. משפט טיטצה מהווה הכללה של למה זו, בכך שהוא מאפשר להרחיב כל פונקציה רציפה: אם M קבוצה סגורה במרחב נורמלי, אז לכל פונקציה רציפה קיימת כך ש .

כל מרחב האוסדורף קומפקטי הוא מרחב . חשיבותם הרבה של מרחבי נובעת מן המשפט של אוריסון: כל מרחב המקיים את אקסיומת המנייה השנייה, הוא מטריזבילי (כלומר: הטופולוגיה שלו מושרית על ידי מטריקה מתאימה).

מכפלות

הישר של סורגנפריי S הוא מרחב לינדלף נורמלי, ועם זאת מרחב המכפלה אינו נורמלי. בעיית Dowker (מ-1951) שאלה האם ייתכן מרחב נורמלי X כך ש- אינו נורמלי. דוגמה למרחב כזה ניתנה על ידי M.E.Rudin ב-1971. עדיין לא ידוע מה העוצמה המינימלית של דוגמה נגדית.

ראו גם


{{bottomLinkPreText}} {{bottomLinkText}}
מרחב נורמלי
Listen to this article

This browser is not supported by Wikiwand :(
Wikiwand requires a browser with modern capabilities in order to provide you with the best reading experience.
Please download and use one of the following browsers:

This article was just edited, click to reload
This article has been deleted on Wikipedia (Why?)

Back to homepage

Please click Add in the dialog above
Please click Allow in the top-left corner,
then click Install Now in the dialog
Please click Open in the download dialog,
then click Install
Please click the "Downloads" icon in the Safari toolbar, open the first download in the list,
then click Install
{{::$root.activation.text}}

Install Wikiwand

Install on Chrome Install on Firefox
Don't forget to rate us

Tell your friends about Wikiwand!

Gmail Facebook Twitter Link

Enjoying Wikiwand?

Tell your friends and spread the love:
Share on Gmail Share on Facebook Share on Twitter Share on Buffer

Our magic isn't perfect

You can help our automatic cover photo selection by reporting an unsuitable photo.

This photo is visually disturbing This photo is not a good choice

Thank you for helping!


Your input will affect cover photo selection, along with input from other users.