שאלות נפוצות
ציר זמן
צ'אט
פרספקטיבה

אי-שוויון המשולש

מוויקיפדיה, האנציקלופדיה החופשית

אי-שוויון המשולש
Remove ads

במתמטיקה, אי-שוויון המשולש הוא אי-שוויון מהצורה , כאשר היא פונקציית מרחק. אי-השוויון מתאר את העובדה הגאומטרית שהקו הישר הוא הדרך הקצרה ביותר בין שתי נקודות; בפרט, אורכה של צלע במשולש אינו עולה על סכום אורכי הצלעות האחרות. אי-שוויון המשולש נחשב לתכונה יסודית של כל שיטה למדידת מרחק, ומשום כך מניחים, כאקסיומה, שהוא מתקיים בכל מרחב מטרי או נורמי. הגרסה החזקה נקראת אי-שוויון המשולש למטריקות לא ארכימדיות.

Thumb
Remove ads

אי-שוויון המשולש בין מספרים ממשיים

ניתן לראות את אי-שוויון המשולש במספרים הממשיים כמקרה פרטי של אי-השוויון על הישר הממשי. כיוון שהמרחק בין שתי נקודות על הישר נמדד באמצעות הערך המוחלט, אי-השוויון במקרה זה שקול ל-, לכל .

כשבוחרים c=0, b=y ו-a=x+y, מתקבלת הצורה החלופית . צורה זו אפשר להוכיח בעזרת חיבור שני האי-שוויונים ו-, או בדיקה של האפשרויות השונות לסימנים של x ושל y.

גרסה נוספת של אי-שוויון המשולש היא: .

הוכחה פורמלית

לצורך הוכחת אי השוויון נשתמש בתכונות ו-. אם אז . אחרת, ומכאן ולכן .

דרך נוספת היא להשתמש בשוויון , ואז .


הוכחה של :

לפי אי שוויון המשולש ולכן

וגם ולכן

ולכן לפי ש וגם אז

המקרה המרוכב

אי-שוויון המשולש במישור המרוכב הוא הטענה , המתייחסת למספרים מרוכבים. ניתן להוכיח את נכונותו שם בכמה דרכים: גאומטרית, הוא שקול לתכונות היסוד של משולש; אלגברית, אפשר לקבל אותו על ידי העברת אגפים מתאימה והעלאה בריבוע; וניתן להסיק אותו מאי-השוויון הממשי באמצעות משפט פיתגורס.

Remove ads

אי-שוויון המשולש במרחבים מופשטים

אי-שוויון המשולש מבטא את העובדה שלא ניתן לקצר את הדרך מ-A ל-C על ידי מעבר בנקודה B. זוהי תכונה יסודית כל-כך של מושג ה"מרחק", עד שהיא מהווה אחת מהאקסיומות המגדירות מטריקה ומרחב מטרי. מאותה סיבה, מניחים את האקסיומה בהגדרה של נורמה ומרחב נורמי.

Remove ads

ראו גם

קישורים חיצוניים

ויקישיתוף מדיה וקבצים בנושא אי-שוויון המשולש בוויקישיתוף
Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads