שאלות נפוצות
ציר זמן
צ'אט
פרספקטיבה
אי-שוויון המשולש
מוויקיפדיה, האנציקלופדיה החופשית
Remove ads
במתמטיקה, אי-שוויון המשולש הוא אי-שוויון מהצורה , כאשר היא פונקציית מרחק. אי-השוויון מתאר את העובדה הגאומטרית שהקו הישר הוא הדרך הקצרה ביותר בין שתי נקודות; בפרט, אורכה של צלע במשולש אינו עולה על סכום אורכי הצלעות האחרות. אי-שוויון המשולש נחשב לתכונה יסודית של כל שיטה למדידת מרחק, ומשום כך מניחים, כאקסיומה, שהוא מתקיים בכל מרחב מטרי או נורמי. הגרסה החזקה נקראת אי-שוויון המשולש למטריקות לא ארכימדיות.

Remove ads
אי-שוויון המשולש בין מספרים ממשיים
ניתן לראות את אי-שוויון המשולש במספרים הממשיים כמקרה פרטי של אי-השוויון על הישר הממשי. כיוון שהמרחק בין שתי נקודות על הישר נמדד באמצעות הערך המוחלט, אי-השוויון במקרה זה שקול ל-, לכל .
כשבוחרים c=0, b=y ו-a=x+y, מתקבלת הצורה החלופית . צורה זו אפשר להוכיח בעזרת חיבור שני האי-שוויונים ו-, או בדיקה של האפשרויות השונות לסימנים של x ושל y.
גרסה נוספת של אי-שוויון המשולש היא: .
הוכחה פורמלית
לצורך הוכחת אי השוויון נשתמש בתכונות ו-. אם אז . אחרת, ומכאן ולכן .
דרך נוספת היא להשתמש בשוויון , ואז .
הוכחה של :
לפי אי שוויון המשולש ולכן
וגם ולכן
ולכן לפי ש וגם אז
המקרה המרוכב
אי-שוויון המשולש במישור המרוכב הוא הטענה , המתייחסת למספרים מרוכבים. ניתן להוכיח את נכונותו שם בכמה דרכים: גאומטרית, הוא שקול לתכונות היסוד של משולש; אלגברית, אפשר לקבל אותו על ידי העברת אגפים מתאימה והעלאה בריבוע; וניתן להסיק אותו מאי-השוויון הממשי באמצעות משפט פיתגורס.
Remove ads
אי-שוויון המשולש במרחבים מופשטים
אי-שוויון המשולש מבטא את העובדה שלא ניתן לקצר את הדרך מ-A ל-C על ידי מעבר בנקודה B. זוהי תכונה יסודית כל-כך של מושג ה"מרחק", עד שהיא מהווה אחת מהאקסיומות המגדירות מטריקה ומרחב מטרי. מאותה סיבה, מניחים את האקסיומה בהגדרה של נורמה ומרחב נורמי.
Remove ads
ראו גם
קישורים חיצוניים
- אי-שוויון המשולש, באתר MathWorld (באנגלית)
- אי-שוויון המשולש, באתר אנציקלופדיה בריטניקה (באנגלית)
Wikiwand - on
Seamless Wikipedia browsing. On steroids.
Remove ads