שאלות נפוצות
ציר זמן
צ'אט
פרספקטיבה
הפרדוקס של בורלי-פורטי
מוויקיפדיה, האנציקלופדיה החופשית
Remove ads
הפרדוקס של בּוּרָלִי-פוֹרְטִי הוא פרדוקס שהציע המתמטיקאי האיטלקי צֶ'זָארֶה בּוּרָלִי-פוֹרְטִי בשנת 1897. הפרדוקס מראה כי אוסף כל הסודרים גדול מכדי להוות קבוצה בתורת הקבוצות, בדומה לפרדוקס קנטור שניתן להסיק ממנו שאוסף כל הקבוצות גדול מכדי להוות קבוצה.
הוכחה
נניח בשלילה שהסודרים מהווים קבוצה A, עם סדר ההשוואה הרגיל. לפי התכונות היסודיות של הסודרים, הקבוצה A סדורה היטב, ויש סודר p המתאים לה. כמו כן לפי הגדרת A הסודר p שייך לה והוא גם איזומורפי לקבוצת כל הסודרים ב-A שקטנים מ-p, שהיא קטע התחלי[1] אמיתי של A. כלומר קיבלנו ש-p איזומורפי גם לקבוצה A וגם לקטע התחלי אמיתי שלה. זוהי סתירה משום שקבוצה סדורה היטב אינה איזומורפית לאף קטע התחלי אמיתי שלה.
ראו גם
קישורים חיצוניים
- הפרדוקס של בורלי-פורטי, באתר MathWorld (באנגלית)
הערות שוליים
Wikiwand - on
Seamless Wikipedia browsing. On steroids.
Remove ads