शीर्ष प्रश्न
समयरेखा
चैट
परिप्रेक्ष्य

त्रिकोणमितीय सर्वसमिकाओं की सूची

विकिपीडिया से, मुक्त विश्वकोश

त्रिकोणमितीय सर्वसमिकाओं की सूची
Remove ads

त्रिकोणमितीय सर्वसमिकाएँ, चरों के त्रिकोणमितीय फलनों के रूप में व्यक्त समतायें होती हैं।

Thumb
कोण θ के सभी त्रिकोणमितीय फलनों को ज्यामितीय रूप से केन्द्रित एक इकाई वृत्त  O के रूप में निर्मित किया जा सकता है
Thumb
The unit circle
Remove ads

प्रयुक्त संकेतों (Notation) के बारे में

सारांश
परिप्रेक्ष्य

To avoid the confusion caused by the ambiguity of sin−1(x), the reciprocals and inverses of trigonometric functions are often displayed as in this table. In representing the cosecant function, the longer form 'cosec' is sometimes used in place of 'csc'.

अधिक जानकारी Function, Inverse function ...

Different angular measures can be appropriate in different situations. This table shows some of the more common systems. Radians is the default angular measure and is the one you use if you use the exponential definitions. All angular measures are unitless.

अधिक जानकारी , ...
Remove ads

मौलिक सम्बन्ध

अधिक जानकारी , ...

From the two identities above, the following table can be extrapolated. Note however that these conversion equations may not provide the correct sign (+ or −). For example, if sin θ = 1/2, the conversion in the table indicates that , though it is possible that . More information would be needed about which quadrant θ lies in to determine a single, exact answer.

अधिक जानकारी , ...
Remove ads

ऐतिहासिक पृष्टभूमि

सारांश
परिप्रेक्ष्य

Rarely used today, the versine, coversine, haversine, and exsecant have been defined as below and used in navigation, for example the haversine formula was used to calculate the distance between two points on a sphere.

अधिक जानकारी , ...

सममिति, अनतर एवं आवर्तन (Symmetry, shifts, and periodicity)

सारांश
परिप्रेक्ष्य

इकाई वृत्त (unit circle) का परीक्षण करके हम त्रिकोणमित्तीय फलनों के निम्नलिखित गुणों को स्थापित कर सकते हैं:

सममिति

जब त्रिकोणमितीय फलन के कुछ मानों से परिलक्षित होते हैं, तो परिणाम अक्सर अन्य त्रिकोणमितीय फलनों में से एक होता है। इससे निम्नलिखित सर्वसमिकाए प्राप्त होती है:

अधिक जानकारी Reflected in ...

आवर्तता (periodicity)

By shifting the function round by certain angles, it is often possible to find different trigonometric functions that express the result more simply. Some examples of this are given shown by shifting functions round by π/2, π and 2π radians. Because the periods of these functions are either π or 2π, there are cases where the new function is exactly the same as the old function without the shift.

अधिक जानकारी , ...
Remove ads

कोणों के योग और अन्तर की सर्वसमिकाएँ (Angle sum and difference identities)

सारांश
परिप्रेक्ष्य
Thumb

इनको योग एवं अन्तर के सूत्र भी कहते हैं। इनको यूलर के सूत्र की सहायता से बडी आसानी से सिद्ध किया जा सकता है।

अधिक जानकारी , ...

अनन्त पदों के योग की ज्या एवं कोज्या

(Sines and cosines of sums of infinitely many terms)

where "|A| = k" means the index A runs through the set of all subsets of size k of the set { 1, 2, 3, ... }.

In these two identities an asymmetry appears that is not seen in the case of sums of finitely many terms: in each product, there are only finitely many sine factors and cofinitely many cosine factors.

If only finitely many of the terms θi are nonzero, then only finitely many of the terms on the right side will be nonzero because sine factors will vanish, and in each term, all but finitely many of the cosine factors will be unity.

अनेक किन्तु सीमित पदों के योग की स्पर्शज्या

(Tangents of sums of finitely many terms)

Let xi = tan(θi ), for i = 1, ..., n. Let ek be the kth-degree elementary symmetric polynomial in the variables xi, i = 1, ..., n, k = 0, ..., n. Then

the number of terms depending on n.

उदाहरण्के लिये,

आदि आदि। इसकी सामान्य स्थिति (general case) गणितीय निगमन (mathematical induction) की सहायता से सिद्ध किया जा सकता है।

Remove ads

कोणों के गुणज के त्रिकोणमित्तीय अनुपात

सारांश
परिप्रेक्ष्य

(Multiple-angle formulae)

अधिक जानकारी , ...

(x के इस फलन (फंक्शन) को डिरिचलेट कर्नेल (Dirichlet kernel) कहते हैं।

दोगुना, तिगुना एवं आधे कोण के सूत्र

(Double-, triple-, and half-angle formulae)

इन्हें योग एवं अन्तर की सर्वसमिकाओं की सहायता से या गुणज-कोण की सर्वसमिकाओं की सहायता से प्रदर्शित (सिद्ध) किया जा सकता है।

अधिक जानकारी , ...

See also Tangent half-angle formula.

यूलर का अनन्त गुणनफल

(Euler's infinite product )

Remove ads

घातांक कम करने का सूत्र

सारांश
परिप्रेक्ष्य

(Power-reduction formulae)

इन्हें कोज्या द्वि-गुण कोण सूत्र के द्वीतीय एवं तृतीय रूप का प्रयोग करके प्राप्त किया जा सकता है।

अधिक जानकारी , ...
Remove ads

गुणनफल-से-योग तथा योग-से-गुणनफल की सर्वसमिकाएँ

सारांश
परिप्रेक्ष्य

(Product-to-sum and sum-to-product identities)

अधिक जानकारी , ...

अन्य सम्बन्धित सर्वसमिकाएँ

If x, y, and z are the three angles of any triangle, or in other words

(If any of x, y, z is a right angle, one should take both sides to be ∞. This is neither +∞ nor −∞; for present purposes it makes sense to add just one point at infinity to the real line, that is approached by tan(θ) as tan(θ) either increases through positive values or decreases through negative values. This is a one-point compactification of the real line.)

टोलेमी का प्रमेय (Ptolemy's theorem)

(The first three equalities are trivial; the fourth is the substance of this identity.) Essentially this is Ptolemy's theorem adapted to the language of trigonometry.

Remove ads

Linear combinations

सारांश
परिप्रेक्ष्य

For some purposes it is important to know that any linear combination of sine waves of the same period but different phase shifts is also a sine wave with the same period, but a different phase shift. In the case of a linear combination of a sine and cosine wave, we have

where

More generally, for an arbitrary phase shift, we have

where

and

  • note: arcsin, arccos, arctan are all inverses.
Remove ads

Other sums of trigonometric functions

सारांश
परिप्रेक्ष्य

Sum of sines and cosines with arguments in arithmetic progression:

For any a and b:

where arctan(y, x) is the generalization of arctan(y/x) which covers the entire circular range (see also the account of this same identity in "symmetry, periodicity, and shifts" above for this generalization of arctan).

The above identity is sometimes convenient to know when thinking about the Gudermanian function.

If x, y, and z are the three angles of any triangle, i.e. if x + y + z = π, then

Remove ads

व्युत्क्रम त्रिकोणमित्तीय फलन

सारांश
परिप्रेक्ष्य

(Inverse trigonometric functions)

पार्स नहीं कर पाये (सिन्टैक्स त्रुटि): {\displaystyle \2arcsin(1/2)+\2arccos(-1/2)+3tan(-1) =\pi/2\;}

Compositions of trig and inverse trig functions

Remove ads

Relation to the complex exponential function

सारांश
परिप्रेक्ष्य
(Euler's formula),

where i² = −1.

"cis"

साँचा:Split-section Occasionally one sees the notation

<math>\operatorname{cis}(x) = \cos(x) + i\sin(x),\,</math>

i.e. "cis" abbreviates "cos&nbsp;+&nbsp;i&nbsp;sin".

Though at first glance this notation is redundant, being equivalent to e<sup>ix</sup>, its use is rooted in several advantages.

Convenience

This notation was more common in the post WWII era when typewriters were used to convey mathematical expressions. Superscripts are both offset vertically and smaller than 'cis' or 'exp'; hence, they can be problematic even for hand writing. For example e<sup> ix²</sup> versus cis(x²) versus exp(ix²). For many readers, cis(x²) is the clearest, easiest to read of the three.

The cis notation is sometimes used to emphasize one method of viewing and dealing with a problem over another. The mathematics of trigonometry and exponentials are related but not exactly the same; exponential notation emphasizes the whole, whereas cis and cos&nbsp;+&nbsp;i&nbsp;sin notations emphasize the parts. This can be rhetorically useful to mathematicians and engineers when discussing this function, and further serve as a mnemonic (for cos&nbsp;+&nbsp;i&nbsp;sin).

The cis notation is convenient for math students whose knowledge of trigonometry and complex numbers permit this notation, but whose conceptual understanding doesn't yet permit the notation e<sup> ix</sup>. As students learn concepts that build on prior knowledge, it is important not to force them into levels of math they are not yet prepared for.

Pedagogy

In some contexts, the cis notation may serve the pedagogical purpose of emphasizing that one has not yet proved that this is an exponential function. In doing trigonometry without complex numbers, one may prove the two identities

<math>\cos(x+y) = \cos(x)\cos(y) - \sin(x)\sin(y) = c_1 c_2 - s_1 s_2,\,</math>
<math>\sin(x+y) = \sin(x)\cos(y) + \cos(x)\sin(y) = s_1 c_2 + c_1 s_2.\,</math>

Similarly in treating multiplication of complex numbers (with no involvement of trigonometry), one may observe that the real and imaginary parts of the product of c<sub>1</sub>&nbsp;+&nbsp;is<sub>1</sub> and c<sub>2</sub>&nbsp;+&nbsp;is<sub>2</sub> are respectively

<math>c_1 c_2 - s_1 s_2,\,</math>
<math>s_1 c_2 + c_1 s_2.\,</math>

Thus one sees this same pattern arising in two disparate contexts:

  • trigonometry without complex numbers, and
  • complex numbers without trigonometry.

This coincidence can serve as a motivation for conjoining the two contexts and thereby discovering the trigonometric identity

<math>\operatorname{cis}(x+y) = \operatorname{cis}(x)\operatorname{cis}(y),\,</math>

and observing that this identity for cis of a sum is simpler than the identities for sin and cos of a sum. Having proved this identity, one can challenge the students to recall which familiar sort of function satisfies this same functional equation

<math>f(x+y) = f(x)f(y).\,</math>

The answer is exponential functions. That suggests that cis may be an exponential function

<math>\operatorname{cis}(x) = b^x.\,</math>

Then the question is: what is the base b? The definition of cis and the local behavior of sin and cos near zero suggest that

<math>\operatorname{cis}(0+dx) = \operatorname{cis}(0) + i\,dx,</math>

(where dx is an infinitesimal increment of x). Thus the rate of change at 0 is i, so the base should be e<sup>i</sup>. Thus if this is an exponential function, then it must be

<math>\operatorname{cis}(x) = e^{ix}.\,</math>
Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads