Mooreov automat

From Wikipedia, the free encyclopedia

Remove ads

U teoriji izračunljivosti, Mooreov automat (ili Mooreov stroj) je konačni automat u kojem je izlazna funkcija pridružena isključivo trenutnom stanju stroja, i ne ovisi o ulazu. Dijagram stanja za Mooreov automat uključuje izlazni znak (simbol) za svako stanje. Usporedi s Mealyevim automatom, u kojem je pak funkcija izlaza pridružena i stanju i ulaznom znaku, te na taj način preslikava prijelaze stroja na izlaz.

Ime Mooreov automat vuče korijen od svoga promicatelja: Edwarda F. Moorea, jednog od pionira konačnih automata, koji ih je prvi opisao u radu Gedanken-experiments on Sequential Machines, pp 129 153, Automata Studies, Annals of Mathematical Studies, no. 34, Princeton University Press, Princeton, N. J., 1956.

Remove ads

Formalna definicija

Mooreov automat se može definirati kao uređena šestorka: { S, S0, Σ, Λ, T, G } koju čine

  • konačan skup stanja ( S )
  • početno (ili inicijalno) stanje S0 koje je element skupa (S)
  • konačan skup ulaznih znakova (ulazna abeceda) ( Σ )
  • konačan skup izlaznih znakova (izlazna abeceda) ( Λ )
  • funkcija prijelaza (T : S × Σ → S) koja preslikava trenutno stanje i ulazni znak u sljedeće stanje
  • izlazna funkcija (G : S → Λ) koja preslikava svako stanje u znak izlazne abecede

Broj stanja u Mooreovom automatu će biti veći ili jednak broju stanja istovjetnog Mealyevog automata

Remove ads
Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads