Realni broj

From Wikipedia, the free encyclopedia

Realni broj
Remove ads

Skup realnih brojeva je unija skupa racionalnih brojeva i skupa iracionalnih brojeva.

Thumb
Odnos skupova brojeva

Računske operacije na skupu su definirane kao i za ostale skupove , i , tj. za realne brojeve vrijede svojstva komutativnosti i asocijativnosti zbrajanja i množenja, te distributivnosti množenja prema zbrajanju.

  • Skup je gust, odnosno između svaka dva različita realna broja postoji beskonačno realnih brojeva.
  • Skup je neprebrojiv.
  • Elementi skupa prekrivaju čitav brojevni pravac.

Skup realnih brojeva, zajedno s operacijama zbrajanja i množenja, primjer je polja.

Remove ads

Osnovna svojstva zbrajanja i množenja realnih brojeva

Za polje realnih brojeva vrijedi:[1]:str. 17.

(R1) (zatvorenost zbrajanja)

(R2) (asocijativnost zbrajanja)

(R3) (neutralnost nule pri zbrajanju)

(R4) (postojanje suprotnog broja)

(R5) (komutativnost zbrajanja)

(R6) (zatvorenost množenja)

(R7) (asocijativnost množenja)

(R8) (neutralnost jedinice pri množenju)

(R9) (postojanje inverznog broja)

(R10) (komutativnost množenja)

(R11) (distributivnost množenja prema zbrajanju slijeva)

(R11)' (distributivnost množenja prema zbrajanju zdesna)

Remove ads

Uređaj na skupu realnih brojeva

Realni broj manji je od realnog broja ako postoji pozitivan realni broj takav da je . Uređaj ima sljedeća svojstva:[1]:str. 61.

  • tranzitivnost uređaja:
  • odnos uređaja prema zbrajanju:
  • odnos uređaja prema množenju: i
Remove ads

Realni broj kao presjek niza padajućih segmenata

Za svaki realni broj postoji padajući niz segmenata

u čijem se presjeku nalazi samo realni broj . Zanimljivo je da se mogu izabrati tako da budu racionalni brojevi.[2]

Izvori

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads