Cuthill–McKee-algoritmus

algoritmus From Wikipedia, the free encyclopedia

Cuthill–McKee-algoritmus
Remove ads

A lineáris algebrában használják a Cuthill–McKee-algoritmust (CM), amely Elizabeth Cuthill és James McKee után kapta a nevét.[1] Ez az algoritmus egy szimmetrikus mintával rendelkező ritka mátrixot egy kis sávszélességű sávmátrixba permutál. Az Alan George-nak köszönhető fordított Cuthill–McKee-algoritmus (RCM) ugyanez az algoritmus, de eredményül fordítva adja vissza az indexszámokat.[2] A gyakorlatban ez általában kevesebb kitöltést eredményez, mint a CM rendezés, amikor is Gauss-eliminációt alkalmaznak.[3]

Thumb
Mátrix Cuthill–McKee-rendezése
Thumb
Ugyanazon mátrix RCM-rendezése

A Cuthill–McKee-algoritmus a gráfkereső algoritmusok között használt standard szélességi keresés algoritmusának egy változata. Perifériás csomóponttal kezdődik, majd szinteket generál -re, amíg az összes csomópont bejárásra nem kerül. Az halmaz az halmazból jön létre, méghozzá az összes -beli csomópont szomszédságában lévő csúcsok növekvő sorrendben történő felsorolásával. Ez a részlet az egyetlen különbség a CM és a szélességi keresés algoritmusa között.

Remove ads

Algoritmus

Adott egy szimmetrikus mátrix, amit a gráf szomszédsági mátrixaként jelenítünk meg. A Cuthill–McKee-algoritmus a gráf csúcsainak újracímkézése a szomszédsági mátrix sávszélességének csökkentése érdekében.

Az algoritmus rendezett n-es csúcsok halmazát állítja elő, ami a csúcsok egy új rendezése.

Először kiválasztunk egy perifériás csúcsot (), ami tulajdonképpen a legalacsonyabb fokú csúcs és beállítjuk .

Majd -vel az alábbi lépéseket megismételjük, amíg .

  • Készítsük el szomszédsági halmazát ( az i-edik komponense) és zárjuk ki azokat a csúcsokat, amelyek már szerepelnek -ben.
  • Rendezzük csúcsait növekvő sorrendbe (csúcsfok).
  • Majd fűzzük azt az eredményhalmazhoz.

Más szóval, számozzuk a csúcsokat egy konkrét szélességi gráfbejárás szerint, ahol a szomszédos csúcsokat növekvő sorrendben járjuk be.

Remove ads

Jegyzetek

Irodalom

Fordítás

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads