Differenciálegyenlet

From Wikipedia, the free encyclopedia

Differenciálegyenlet
Remove ads

A differenciálegyenletek olyan egyenletek a matematikában (közelebbről a matematikai analízisben), melyekben az ismeretlen kifejezés egy differenciálható függvény, és az egyenlet a függvény és ennek deriváltja között teremt kapcsolatot. A problémák differenciálegyenletben való megfogalmazása a fizikában, mérnöki tudományokban, a közgazdaságtanban és még számos tudományban alapvető szerepet tölt be.

Thumb
Egy rugóval rögzített test elmozdulását az időben (ha az energiaveszteségtől eltekintünk) egy típusú egyenlet írja le. Ennek megoldása például az és a függvény is

Hogy mennyire fontosak az alkalmazásaikban a differenciálegyenletek, jól példázza Newton második törvénye. Ez nem mond ki mást, mint, hogy az elmozdulás idő szerinti második deriváltja egyenesen arányos az erővel. Ha az erő minden pillanatban csak a test helyzetétől függ, akkor ez a differenciálegyenlet így írható:

ahol:

a rezgő test tömege,
a kitérés (út) függvénye az idő szerint
az úgynevezett rugómerevség
a gyorsulás[1]
az ismeretlen függvény az x(t), ennek t szerinti második deriváltja az .

és mindez csak akkor igaz, ha a tömeg nem változik, ha változik, akkor lásd: Newton törvényei.

A differenciálegyenletek nem kizárólag akkor jutnak szerephez, ha az időben folyamatosan változnak az állapotjelzők értékei, hanem olyan diszkrét (elkülöníthető lépésekben lezajló) folyamatok esetében is (mint mondjuk egy sakkjátszma, vagy a természetben élőlénypopulációk növekedése), amikor a folyamat meghatározó állapotjellemzőinek folytonosként való kezelése tömegméretekben kielégítő helyességgel írja le a folyamatot. Egy mennyiség és megváltozásának kapcsolatára vagy megfigyelések utalnak, vagy feltételeznek egy elméleti relációt a jellemzők között. Például a növekedés általában függ magától a populáció nagyságától – ez egy közvetlenül a tapasztalatból származó modell. A bolygómozgás differenciálegyenletei viszont a newtoni mechanikából eredeztethetők.

Általában egy (közönséges) differenciálegyenlet megoldását az y=y(x) alakban írjuk fel (szóban: y az x függvénye). Az egyenletben az y(x) jelölés helyett inkább csak az y-t használjuk. Feltesszük azonban, hogy y egy valós intervallumon értelmezett, legalább annyiszor differenciálható függvény, ahányadik deriváltja szerepel az egyenletben. Például az

egy megoldása a (0,+∞)-en értelmezett (és ott differenciálható) függvény, egy másik a (2,+∞)-n értelmezett függvény.

Az egyenleteket kielégítő megoldásfüggvények csak a legegyszerűbb esetekben fejezhetők ki zárt alakban. Sok esetben szükségtelen is kiszámolni a konkrét megoldásokat, sokkal többet tudhatunk meg a folyamatokról, ha a megoldások kapcsolatait vizsgáljuk. Más esetben szükséges kiszámítani a megoldás konkrét értékeit. Mindkét feladatra számítógépes módszereket használnak, az első inkább kvalitatív, míg a második kvantitatív eredményt szolgáltat.

Remove ads

Típusai

vagy
Az utóbbi a lineáris oszcillátor (mint például az ideális rugó vagy az ideális rezgőkör stb.) egyenlete.
vagy
Az utóbbi a sztochasztikus Hamilton–Jacobi–Bellman-egyenlet.
  • Algebro-differenciálegyenlet. A differenciálegyenlet mellett a megoldásnak az algebrai mellékfeltételeknek is eleget kell tennie.
  • Késleltetett differenciálegyenlet. Itt az ismeretlen és deriváltja mellett azok időbeli eltoltjai is szerepelnek.
Példa a populációdinamikából:
[2]
  • Integro-differenciálegyenletek. Deriválás mellett integrálok is szerepelnek.
Erre példa az impulzusra felírt Schrödinger-egyenlet.

A különböző alkalmazási területeken további típusok is felmerülhetnek.

Remove ads

Közönséges differenciálegyenletek típusai

  • n-edrendűnek nevezzük a differenciálegyenletet, ha a benne szereplő magasabbrendű deriváltak között az n-edik a legnagyobb. Például:
elsőrendű,
másodrendű,
negyedrendű.
  • lineáris egy differenciálegyenlet, ha y (az ismeretlen függvény) és deriváltjai legfeljebb az első hatványon szerepelnek, és nem szerepel az egyenletben ilyen tényezők szorzata. Példa:
elsőrendű lineáris,
másodrendű lineáris.
  • nemlineáris, ha nem lineáris. Példa:
,

Bernoulli-féle differenciálegyenlet

A Bernoulli-féle differenciálegyenlet

(n ≠ 0,1) (1)

közönséges, egyismeretlenes, elsőrendű, nemlineáris differenciálegyenlet.

Riccati-féle differenciálegyenlet

A Riccati-féle differenciálegyenlet

(1)

közönséges, egyismeretlenes, elsőrendű, legfeljebb másodfokú differenciálegyenlet. Speciális esetei a lineáris és a Bernoulli-féle differenciálegyenletek.

Euler-féle lineáris másodrendű differenciálegyenlet

Az Euler-féle lineáris másodrendű differenciálegyenlet egyismeretlenes, másodrendű közönséges differenciálegyenlet-típus:

(1)

ahol és állandók.

Remove ads

Közönséges, lineáris differenciálegyenletek típusai

  • homogén lineáris differenciálegyenlet (függő változóban homogén), ha lineáris, de nincs benne sem kizárólag az x-től függő sem konstans tag. Példa:
elsőrendű homogén lineáris,
másodrendű homogén lineáris.
  • inhomogén lineáris differenciálegyenlet, ha van benne konstans, vagy x-től függő tag. Példa:
elsőrendű inhomogén lineáris,
másodrendű inhomogén lineáris.
  • állandó együtthatójú lineáris differenciálegyenlet, ha az y és összes deriváltja együtthatója konstans. Példa:
elsőrendű állandó együtthatós homogén lineáris,
másodrendű állandó együtthatós inhomogén lineáris.
Remove ads

Differenciálegyenletek megoldása

Differenciálegyenletet megoldani annyit tesz, mint meghatározni azokat a függvényeket, melyek a deriváltjaikkal együtt azonosan kielégítik az adott differenciálegyenletet. Ezeket a függvényeket tekintjük a differenciálegyenlet megoldásainak. Mivel a differenciálegyenletet általában integrálással oldjuk meg, a megoldást szokás a differenciálegyenlet integráljának is nevezni.

Az n-edrendű közönséges differenciálegyenlet általános megoldása az a függvény, mely pontosan n számú egymástól független állandót (paramétert) tartalmaz, és azonosan kielégíti az adott differenciálegyenletet.

Az n-edrendű közönséges differenciálegyenlet partikuláris megoldása az a függvény, mely legfeljebb n-1 számú egymástól független állandót (paramétert) tartalmaz, és azonosan kielégíti az adott differenciálegyenletet. Speciális esetben egyetlen paramétert sem tartalmaz a partikuláris megoldás. Általában (de nem mindig) az általános megoldás tartalmazza az összes partikuláris megoldást is, melyet úgy kaphatunk, hogy a paramétereknek konkrét értékeket adunk. A differenciálegyenlet partikuláris megoldásának kiválasztásához feltételeket kell megadni. Egy n-edrendű közönséges differenciálegyenlethez meg lehet adni a független változó egy adott értékéhez tartozó függvényértéket, az első, második, …, (n-1)-edik derivált értékét. Ezeket nevezzük kezdeti feltételnek. Amennyiben mind az n számú adatot megadjuk, a partikuláris megoldás nem fog paramétert tartalmazni.

Az n-edrendű közönséges differenciálegyenlet egy partikuláris megoldását úgy is ki lehet választani, hogy legfeljebb n számú összetartozó (t, x(t)) értéket adunk meg, amit az x(t) partikuláris megoldásnak ki kell elégítenie. Ezeket nevezzük kerületi, illetve határfeltételeknek. Ha pontosan n számú kerületi feltételt adunk meg, a partikuláris megoldásban nem lesz paraméter.

Az elsőrendű közönséges differenciálegyenlet általános megoldása az x, y síkban egy egyparaméteres görbesereget határoz meg. Az itt megadható kezdeti feltétel geometriailag egy pont megadását jelenti, és így az egy kezdeti feltételt kielégítő partikuláris megoldás a görbeseregnek azt a görbéjét jelenti, amely áthalad az adott ponton.

A másodrendű közönséges differenciálegyenlet általános megoldása az x, y síkban egy kétparaméteres görbesereget határoz meg. Ebben az esetben a kezdeti feltétel geometriai jelentése egy pont és azon pontban a partikuláris megoldás érintője.

Remove ads

Megoldási módszerek

  • A változók szeparálása:
• Az y' = F(x, y) közönséges esetben akkor beszélünk a szeparábilis avagy szétválasztható változójú egyenletről, ha F előáll F(x, y) = f(xg(y) szorzat alakban.
Parciális differenciálegyenlet esetén a változók szeparálásán azt értjük, hogy a z = z(x, y) megoldásfüggvényt a z = f(xg(y) alakban keressük – ekkor az egyenlet szeparábilis megoldásait kapjuk meg.
  • Egzakt differenciálegyenlet: akkor mondjuk az elsőrendű egyenletről, hogy egzakt, ha P(x, y)dx + Q(x, y)dy = 0 alakú, és ∂P/(∂y) = ∂Q/(∂x). Ekkor az implicit általános megoldás Φ(x, y) = konstans, akkor és csak akkor, ha ∂Φ/(∂x) = P és ∂Φ/(∂y) = Q.
Remove ads

Szoftver

Jegyzetek

Források

További információk

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads