From Wikipedia, the free encyclopedia
A gáz forma az anyag egyik halmazállapota. Ha a hőmérséklet magasabb a kritikus hőmérsékletnél, gázról beszélünk; különben gőzről.[* 1][* 2] Ha a halmaz részecskéi egymástól távol vannak, ideális esetben a köztük lévő kölcsönhatások – vagyis a vonzó és taszító erők – teljes mértékben elhanyagolhatók (ezek az ún. ideális gázok, azonban ez nagyon ritka). Mint a folyadékok, a gázok is fluidumok: képesek áramlani és nem állnak ellent a deformációnak, habár van viszkozitásuk. A folyadékokkal ellentétben a gázok nem öltik fel az őket tartalmazó test formáját, hanem igyekeznek a rendelkezésükre álló teret teljesen kitölteni. A gázokban meglévő mozgási energia a gázrészecskék – melyek lehetnek atomok (általában nemesgázok, mint a hélium, neon stb.), elemmolekulák (pl. kétatomos oxigén, nitrogén, bróm) vagy vegyületmolekulák (pl. szén-dioxid, nitrogén-oxidok) – nagy sebessége és állandó, véletlenszerű mozgása (diffúzió) miatt a második legnagyobb a halmazállapotok között (a plazma után). Ezen magasabb kinetikus energiaszint miatt a gázok atomjai/molekulái szinte teljesen rugalmasan visszapattannak az őket tároló anyag felületéről és egymásról is. Ez a folyamat a kinetikus energia növelésével erősödik. A gázok állapotát alapvetően a négy fő állapotjelzővel tudjuk meghatározni: a nyomás, a térfogat, a hőmérséklet és az anyagmennyiség segítségével.[1][2]
Elterjedt tévhit, hogy a gázok nyomását a gázmolekulák egymásnak ütközésével magyarázzák, de valójában véletlenszerű sebességük elegendő a nyomás értékének meghatározásához. A kölcsönös ütközések csupán a Maxwell–Boltzmann-eloszlás megalapozásához voltak fontosak.
A „gáz” szó valószínűleg Jan Baptist van Helmont flamand kémikustól ered, aki a 17. század eleji nyelvújításkor használta először. A „gáz” a görög χάος (káosz, utalva a káoszelméletre) szó flamand kiejtése, vagyis pusztán az akkori alkímiai szokásoknak megfelelő átirata.[3] A szó ilyen formájú megalkotásban valószínűleg befolyásolta Paracelsus munkássága.[* 3][4]
Egy másik, alternatív történet szerint van Helmont a gahst vagy geist (jelentésük szellem vagy lélek) szavak eltorzított formájaként vezette be. Ez jól tükrözné a kor azon felfogását, mely szerint a gázok természetfeletti "képességekkel" bírnak, mint például a lángok kioltása és halál okozása, és melyek főként a "bányákban, kutak mélyén, temetőkben és magányos helyeken lakoznak."[5]
Az angol nyelvű irodalomban a gas szót légnemű halmazállapot értelmében sokszor (gyűjtőfogalomként) használják. További félreértések alapja lehet, hogy az amerikai angolban a köznapi beszédben a gas a folyékony halmazállapotú, autó-üzemanyagként szolgáló benzint is jelenti. A szakmai szóhasználat ennél pontosabb:
angol | magyar |
---|---|
gas | gáz |
vapor | gőz |
steam | vízgőz |
A normálállapotban (0 °C=273,15 K normál hőmérsékleten és 1 atm=101,325 kPa légköri nyomáson) stabilis gáz halmazállapotú kémiai anyagok közül egyetlen elemből épülnek fel a következők:
Ezek együtt alkotják az „elemi gázok” csoportját. Az alkotó kémiai elemektől való megkülönböztetés érdekében (főként angol nyelvterületen) használják még a „molekuláris gázok” elnevezést is.[6][2]
A gázok legfontosabb tulajdonságait, az állapotukat alapvetően a négy legfontosabb rájuk jellemző adattal, négy állapotjelzővel tudjuk leírni: nyomás, térfogat, hőmérséklet, anyagmennyiség. A köztük (bizonyos körülmények között) fennálló matematikai kapcsolatokat próbálják meg leírni a különböző állapotegyenletek, a kezdetlegesebbek és az általánosabbak is. Ezen egyenletek megfelelő állapotok esetén elég pontosan működnek, azonban teljesen általános, minden körülmény esetén tökéletesen működő állapotegyenletet nem ismerünk.
A nyomás azt mutatja meg, hogy adott felületre mekkora erővel hat (mekkora nyomást gyakorol rá) az adott gáz. A nyomás a gázrészecskék diffúziójának következménye, melynek során folyamatosan rugalmasan ütköznek a felülettel. A térfogat – mint extenzív mennyiség – a gáz térbeli kiterjedését mutatja meg; a hőmérséklet pedig az anyag belső energiáját. Az anyagmennyiség a jelen levő részecskék mennyiségét állapítja meg, mólokban kifejezve (1 mól kb. 6,022045·1023 részecskének felel meg).
A következőkben jelölje a nyomás Pa-ban (pascal) kifejezett értékét , a térfogat m3-ben (köbméter) kifejezett értékét , az abszolút (kelvinben mért) hőmérsékletet , a hőmérséklet °C-ban kifejezett értékét , a mólszámmal kifejezett anyagmennyiséget pedig .
Az első gázegyenletet Robert Boyle angol tudós 1662-ben megfigyelések útján rögzítette. Az egyenlet kimondja, hogy állandó anyagmennyiség és hőmérséklet mellett a gáz nyomása fordítottan arányos a térfogatával (vagyis a gázt összenyomva, nagyobb lesz a nyomás; kitágítva pedig kisebb), ami úgy is megfogalmazható, hogy a nyomás és a térfogat szorzata állandó. Ugyanerre az eredményre jutott 1679-ben Edme Mariotte francia tudós is. Ezért magyar nyelvterületen Boyle–Mariotte-törvénynek hívják[* 4] a fenti állítást leíró egyenletet.
1787-ben Jacques Charles francia természettudós kísérleti úton megállapította, hogy állandó nyomáson adott mennyiségű ideális gáz esetén a térfogat egyenesen arányos a hőmérséklettel , vagyis – ez a Charles-törvény. 1802-ben a francia Joseph Louis Gay-Lussac hasonló eredményt publikált, több kísérleti bizonyítékot mutatva be, majd 1809-ben felállította saját összefüggését: állandó térfogatú, adott mennyiségű ideális gáz esetén a nyomás egyenesen arányos a hőmérséklettel , vagyis – ez a Gay-Lussac-törvény.
1811-ben Amedeo Avogadro olasz fizikus felállította a ma nevét viselő Avogadro-törvényt: ideális gáz térfogata egyenesen arányos az anyagmennyiségével, vagyis .
Az úgynevezett egyesített gáztörvény a Boyle–Mariotte-törvény és a Gay-Lussac-törvény együtteséből áll elő: . Ezzel együtt az Avogadro-törvény megadja az általános gáztörvényt: ideális gázokra fennáll a összefüggés, ahol R=8,314 J/mol·K az egyetemes gázállandó.
A későbbiekben a nem ideális gázokra számos összetettebb egyenletet felállítottak, ezek közül a legfontosabbak: Van der Waals-egyenlet, Redlich–Kwong egyenlet, Berthelot-egyenletek, Dieterici-egyenlet, Clausius-egyenlet, Virial-egyenlet, Peng–Robinson-egyenlet, Wohl-egyenlet, Beattie–Bridgeman-egyenlet, Benedict–Webb–Rubin-egyenlet. Jellemzőjük, hogy mindegyikben szerepelnek kísérletileg meghatározott, különböző paraméterek/konstansok.
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.