Timeline
Chat
Prospettiva

Matrice elementare

Da Wikipedia, l'enciclopedia libera

Remove ads

In algebra lineare, con matrice elementare si indica generalmente una matrice quadrata di un certo tipo, utile in alcuni algoritmi come l'algoritmo di Gauss o le fattorizzazioni LU e QR.

Definizione

Riepilogo
Prospettiva

Nella più grande generalità, una matrice elementare è una matrice quadrata a coefficienti reali o complessi, del tipo

dove è la matrice identità e è una matrice con rango al più uno. In altre parole, le colonne (o le righe) di sono tutte multiple una dell'altra, ad esempio:

Equivalentemente, è il prodotto di due vettori, il primo colonna ed il secondo riga (perché indica la trasposta di ). Nell'esempio, abbiamo

Risulta quindi comodo esprimere una matrice elementare come

dove è un coefficiente (reale o complesso) e sono vettori non nulli.

Remove ads

Proprietà

Le principali proprietà delle matrici elementari sono:

  • Se il numero è diverso da uno, la matrice è invertibile e la sua inversa è con
    .
  • dati due vettori non nulli, esiste una matrice elementare tale che .
Remove ads

Matrici elementari di Gauss

Riepilogo
Prospettiva

Le matrici elementari di Gauss sono matrici elementari molto semplici, definite per interpretare le mosse di Gauss come moltiplicazione per una matrice. Sono di tre tipi, ciascuno corrispondente ad un tipo di mossa.

Scambio di righe

La matrice è ottenuta dalla matrice identità scambiando le righe -esima e -esima:

Può essere anche definita come

dove

è l'-esimo vettore della base canonica.

Moltiplicazione di una riga per uno scalare

Analogamente, è ottenuta dalla matrice identità moltiplicando la riga -esima per un numero .

Può anche essere definita come

Combinazione lineare

La matrice è ottenuta dalla matrice identità aggiungendo alla riga -esima la riga -esima moltiplicata per .

Può anche essere definita come

Relazione con l'algoritmo di Gauss

Se è una matrice qualsiasi con righe, allora le matrici sono le matrici ottenute da operando le corrispondenti mosse di Gauss.

Remove ads

Matrici elementari di Householder

Lo stesso argomento in dettaglio: Trasformazione di Householder.

Una matrice di Householder è una matrice elementare del tipo dove è un vettore di norma uno.

Le matrici elementari di Householder sono utili per definire le trasformazioni di Householder e quindi la fattorizzazione QR.

Remove ads

Voci correlate

  Portale Matematica: accedi alle voci di Wikipedia che trattano di matematica
Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads