トップQs
タイムライン
チャット
視点

イベントホライズンテレスコープ

地球上にある電波望遠鏡を超長基線電波干渉法(VLBI)を用いて結合させ、銀河の中心にある巨大ブラックホールの姿を捉えるプロジェクト ウィキペディアから

イベントホライズンテレスコープ
Remove ads

イベントホライズンテレスコープ[1]EHT/Event Horizon Telescope)は、地球上にある電波望遠鏡をVLBI(超長基線電波干渉法)を用いて結合させ、銀河の中心にある巨大ブラックホールの姿を捉えるプロジェクトである。直訳で事象の地平線望遠鏡とも表記される[2]。観測対象は、地球を含む天の川銀河の中心にある「いて座A*」と巨大楕円銀河M87の中心にある超巨大ブラックホールであり、これを撮影可能な解像度を有している[3][4][5][6][7]

Thumb
いて座A*(中央)と最近起きた爆発現象の光エコーの軟X線画像

現在、米国マサチューセッツ工科大学シェパード・ドールマンがプロジェクトディレクター[8]アリゾナ大学のディミトリス・サルティス(Dimitrios Psaltis)がプロジェクトサイエンティスト、オランダライデン大学のレモ・ティラヌス(Remo Tilanus)がプロジェクトマネージャーを務めている[9]

Remove ads

概要

EHTは、世界中の複数の電波望遠鏡を結合させることで非常に高い感度と解像度を実現している。VLBI(超長基線電波干渉法)を用いることで、何千キロメートルも離れたところにある電波望遠鏡を結び付けて、地球と同じサイズの口径を持つ仮想的な電波望遠鏡を構成することができる[10]。EHTの実現のためには、サブミリ波での両偏波観測可能な受信機、230 - 450GHzの周波数帯でVLBIを実現できる高安定な基準周波数信号、広帯域なVLBIバックエンドとデータ保存装置の開発と、サブミリ波VLBI観測が可能な天文台での試験観測が必要であった[11]

2006年に最初のデータを取得して以来、EHTは徐々に参加する望遠鏡の数を増加させていった。天の川銀河中心にあるいて座A*の画像を取得するための初めての観測は2017年4月に実施されたが[12][13]、EHTに参加する南極点望遠鏡の冬季閉鎖により、データの輸送と処理が2017年12月にずれ込んだ[14]。超巨大ブラックホールの画像が撮影されれば、アルバート・アインシュタインが提唱した一般相対性理論の検証が可能である[10][13]

EHTの観測で取得されたデータは、ハードディスクドライブに保存され、飛行機(いわゆるスニーカーネット)で各望遠鏡からマサチューセッツ工科大学ヘイスタック観測所/天文台と、ドイツマックス・プランク電波天文学研究所に運ばれ、40Gbit/sのネットワークで結合された800個のCPUを擁するグリッド・コンピューターで処理される[15]

Remove ads

研究成果

Thumb
EHTが世界で初めて撮影に成功したブラックホールの事象の地平線

研究成果は2019年4月10日13時 (UTC)から 、アメリカ合衆国ワシントンD.C.)の他、日本東京)、ベルギーブリュッセル)、チリサンティアゴ)、中国上海)、台湾台北)で同時に記者会見が開かれ[16]、人類史上初[17]のブラックホールの直接撮影であるM87中心の巨大ブラックホールの撮像が公開された[18]。この観測により、超大質量ブラックホールの事象の地平面の周囲に存在する光子球[19](photon sphere[19]) の存在とそれが作るブラックホールシャドウ[18][19]が直接確認された[18]。ブラックホールシャドウのサイズは1000億km、事象の地平面の直径は400億kmと見積もられている[18]。この撮影には、ALMAを中核とする南北アメリカ大陸スペインハワイにある望遠鏡7台が使われた[20]。2019年の発表後、EHTチームの公開したデータを世界各国の研究チームが再解析し、EHTチームと同様にリング状の画像を得ている[21]。2022年6月には、EHTチームに参加していない三好真助教(国立天文台)らの研究グループによる「リング構造であるとする解析結果は誤りである」とする研究結果がアストロフィジカルジャーナル誌に掲載されたが[22]、EHTチームは誤った理解に基づくものとして否定している[21]

2020年、『史上初のブラックホールの撮影』により、日本のSFファンが選ぶ第51回星雲賞の自由部門を受賞。

2022年5月12日に開かれた世界同時記者会見にて、M87に次いで観測史上2例目となる、いて座A*にある超大質量ブラックホールのブラックホールシャドウの直接観測に成功したと発表した[23]

Remove ads

参加機関

Thumb
EHTとグローバルミリ波VLBIアレイ[24]
Thumb
EHTのVLBI装置図。遠く離れたアンテナには、それぞれ非常に精密な原子時計が搭載されている。アンテナで集められたアナログ信号はデジタル信号に変換され、原子時計から供給された精密な時刻信号とともにハードディスクドライブに保存される。ハードディスクドライブはその後、相関器のある所まで輸送され、同期処理される。各地から持ち寄られたデータをもとに天文画像が合成される。

2019年現在、EHT評議会に代表者を出している機関は以下の13機関[8]。その他、EHTコラボレーションに個人として参加している研究者を含めると、76機関、206名が参加している[8]

EHTに貢献している機関・望遠鏡は以下の通りである[25]

脚注

参考文献

関連項目

外部リンク

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads