トップQs
タイムライン
チャット
視点

フレヴィッツの定理

ウィキペディアから

Remove ads

数学において、フレヴィッチの定理: Hurewicz theorem)は、代数的位相幾何学の基本的結果であり、フレヴィッチ準同型と呼ばれる写像を通して、ホモトピー論ホモロジー論を結びつけるものである。定理の名前は、ヴィトルド・フレヴィッチ英語版 (Witold Hurewicz) に因んでいて、アンリ・ポアンカレ (Henri Poincaré) による以前の結果を一般化した定理である。

定理の主張

要約
視点

フレヴィッチの定理は、ホモトピー群ホモロジー群を結びつける重要な定理である。

絶対的なバージョン

任意の位相空間 X と正の整数 k に対し、kホモトピー群から k 次(整数係数)ホモロジー群への、フレヴィッチ準同型 (Hurewicz homomorphism) と呼ばれる群準同型

が存在する。k = 1 と弧状連結X に対して、フレヴィッツの定理は、標準的なアーベル化写像

と同値となる。

フレヴィッツの定理は、X(n  1)-連結であれば、フレヴィッツ準同型写像は n  2 のときすべての k  n に対し同型となり、n = 1 のときアーベル化となる、というものである。特に、フレヴィッツの定理は、第一ホモトピー群(基本群)のアーベル化が第一ホモロジー群

に同型であることを言っている。従って、X弧状連結で、π1(X) が完全英語版であれば、第一ホモロジー群が 0 となる。

さらに、n 2 に対し、X が (n  1)-連結のときはいつも、フレヴィッツ準同型写像は から への全射である。

群の準同型は、標準的な生成子 を選び、写像 のホモトピー類を に写すことにより得られる。

相対的なバージョン

位相空間対 (X, A) と整数 k > 1 に対し、相対ホモトピー群から相対ホモロジー群への準同型

が存在する。相対フレヴィッツの定理は、XA が連結であり、対 (X, A) が (n − 1)-連結であれば、k < n に対し、Hk(X,A) = 0 であり、Hn(X, A) は πn(X, A) から π1(A) への作用で割ることで得られるという定理である。このことは、Whitehead (1978) では帰納法により証明され、絶対バージョンとホモトピー加法補題と証明された。

この相対的フレヴィッツの定理は、Brown & Higgins (1981)において、射

[1]

に関するステートメントとして再定式化された。

このステートメントは、ホモトピー切除定理英語版(homotopical excision theorem)の特別な場合であり、n > 2 に対し誘導加群( n = 2 に対しては、接合加群(crossed module))を意味し、相対ホモトピー群の高次ホモトピーのファン・カンペンの定理(van Kampen theorem)から導かれる。証明は 3次のホモトピー亜群のテクニックの発展を必要とした。

単体の集合のバージョン

位相空間についてのフレヴィッツの定理は、n-連結なカンの条件を満す単体的集合英語版(simplicial set)についての成立するとする定理である[2]

有理フレヴィッツ定理

有理フレヴィッツ定理(Rational Hurewicz theorem)[3][4] に対し であるような X を単連結な位相空間とすると、 フレヴィッツ写像

は、 に対して同型を、 に対しては全射を引き起す。

Remove ads

脚注

参考文献

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads